The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving t...The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introduc- ing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles, this pa- per proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDE Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader us...Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader uses the feedback information from followers to the leader to modify its motion. The advantage of this control scheme is that it reduces the tracking errors and improves the robustness of the team cohesion to followers' faults. The results of simulation are provided to illustrate that information feedback can improve the performance of the system.展开更多
Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-...Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.展开更多
Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune s...Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.展开更多
This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order ...This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order sliding mode observer is designed to estimate the velocity. Then a distributed discontinuous control law based on first-order SMC is presented to solve the consensus problem. Moreover, to overcome the chatting problem, two controllers based on the boundary layer method and the super-twisting algorithm respectively are presented. It is shown that the MASs will achieve consensus under some given conditions. Some examples are provided to demonstrate the effectiveness of the proposed control laws.展开更多
For multi-agent systems based on the local information,the agents automatically converge to a common consensus state and the convergence speed is determined by the algebraic connectivity of the communication network.T...For multi-agent systems based on the local information,the agents automatically converge to a common consensus state and the convergence speed is determined by the algebraic connectivity of the communication network.To study fast consensus seeking problems of multi-agent systems in undirected networks,a consensus protocol is proposed which considers the average information of the agents' states in a certain time interval,and a consensus convergence criterion for the system is obtained.Based on the frequency-domain analysis and algebra graph theory,it is shown that if the time interval is chosen properly,then requiring the same maximum control effort the proposed protocol reaches consensus faster than the standard consensus protocol.Simulations are provided to demonstrate the effectiveness of these theoretical results.展开更多
The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent...The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.展开更多
Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tigh...Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tight constraint environment. However, the universal method to quantitatively measure the living degree of an MLAS remains uncertain, which is critical to the self-organizing process. Therefore, a novel analytic hierarchy process (AHP) based method with dependent pairwise comparison matrix (PCM) for the evaluation of living degree of the MLAS is proposed, which eliminates the shortcoming of fixed PCM in traditional process. Furthermore, to avoid the annoying procedure of the consistency validation, the PCMs are appropriately reconstructed. Through an illustration of the netted radar system, the calculation detail is explicitly presented. Altogether, the advanced evaluation method successfully accomplishes the preset objective and promotes the development of the MLAS theory and AHP as well.展开更多
基金Supported by National Nature Science Foundation of China (61074068, 60774009, 61034007), and the Research Fund for the Doc- toral Program of Chinese Higher Education (200804220028)
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (60934003, 61074065), Key Project for Natural Science Research of Hebei Education Department (ZD200908), and the Doctor Foundation of Northeastern University at Qinhuangdao(XNB201507)
基金Supported by National Natural Science Foundation of China (61079001, 61273006), National High Technology Research and Development Program of China (863 Program) (2011AA110301), and Specialized Research Fund for the Doctoral Program of Higher Education of China (20111103110017)
基金supported by the National Natural Science Foundation of China (60574088 60874053)
文摘The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introduc- ing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles, this pa- per proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDE Simulations are provided to demonstrate the effectiveness of the theoretical results.
基金supported by the National Natural Science Foundation of China(60574088).
文摘Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader uses the feedback information from followers to the leader to modify its motion. The advantage of this control scheme is that it reduces the tracking errors and improves the robustness of the team cohesion to followers' faults. The results of simulation are provided to illustrate that information feedback can improve the performance of the system.
基金Supported by National Research Foundation of Singapore (NRF-CRP8-2011-03) and National Natural Science Foundation of China (61120106011, 61034007, 61203045, 61304045)
基金supported by the Fundamental Research Funds for the Central Universities(JUSRP11020)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090093120006)
文摘Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.
文摘Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative airdefense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics between the CASoSSWF and the BIS, and then designs the models of components and the architecture for a monitoring agent, a regulating agent, a killer agent, a pre-warning agent and a communicating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dynamic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CASoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship formation operation simulation system.
基金Supported by National Natural Science Foundation of China (61273137, 51209026, 61074017), the Scientific Research Fund of Liaoning Provincial Education Department (L2013202), and the Fundamental Research Funds for the Central Universities (3132013037, 3132014047, 3132014321)
基金Supported by National Natural Science Foundation of China (61079001, 61273006), National High Technology Research and Development Program of China (863 Program) (2011AAl10301), Specialized Research Fund for the Doctoral Program of Higher Education of China (20111103110017), Hebei Province Science and Technology Research and Development Planning Project (10203548D), Hebei Province Science and Technology Planning Project (13210807) Hebei Province Science and Technology Conditions Building Program (11963546D)
基金supported by the National Natural Science Foundation of China(6137510561403334)
文摘This paper investigates the consensus problem of second-order nonlinear multi-agent systems (MASs) via the sliding mode control (SMC) approach. The velocity of each agent is assumed to be unmeasurable. A second-order sliding mode observer is designed to estimate the velocity. Then a distributed discontinuous control law based on first-order SMC is presented to solve the consensus problem. Moreover, to overcome the chatting problem, two controllers based on the boundary layer method and the super-twisting algorithm respectively are presented. It is shown that the MASs will achieve consensus under some given conditions. Some examples are provided to demonstrate the effectiveness of the proposed control laws.
基金This work was supported by the National "Natural Science Foundation of China (61304155, 11371049), and the Beijing Municipal Government Foundation for Talents (2012D005003000005).
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), Key Project of Natural Science Fouudation of China (60934003), National Natural Science Foundation of China (61074065, 60974018), Natural Science Foundation of Hebei Province(F2012203119), and the Science Foundation of Yanshan University for the Excellent Ph. D. Students (201204) The authors thank Chen Cai-Lian of the Shanghai Jiao Tong University for her comments on English polishing and problem formulation.
基金supported by the National Natural Science Foundation of China (6087405360574088)
文摘For multi-agent systems based on the local information,the agents automatically converge to a common consensus state and the convergence speed is determined by the algebraic connectivity of the communication network.To study fast consensus seeking problems of multi-agent systems in undirected networks,a consensus protocol is proposed which considers the average information of the agents' states in a certain time interval,and a consensus convergence criterion for the system is obtained.Based on the frequency-domain analysis and algebra graph theory,it is shown that if the time interval is chosen properly,then requiring the same maximum control effort the proposed protocol reaches consensus faster than the standard consensus protocol.Simulations are provided to demonstrate the effectiveness of these theoretical results.
基金supported by the Key Program of the National Science Foundation of China(50830201)Aviation Research Foundation(20060952)+1 种基金the National High Technology Research and Development of China(2007AA03Z117)the Natural Science Foundation of Jiansu Province(08kjd560009)
文摘The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.
基金This work was supported by the National Natural Science Foundation of China (61374054, 61203007), and Natural Science Foundation Research Projection of Shaanxi Province (2013JQ8038).
基金supported by the National Natural Science Foundation of China(61172176)
文摘Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tight constraint environment. However, the universal method to quantitatively measure the living degree of an MLAS remains uncertain, which is critical to the self-organizing process. Therefore, a novel analytic hierarchy process (AHP) based method with dependent pairwise comparison matrix (PCM) for the evaluation of living degree of the MLAS is proposed, which eliminates the shortcoming of fixed PCM in traditional process. Furthermore, to avoid the annoying procedure of the consistency validation, the PCMs are appropriately reconstructed. Through an illustration of the netted radar system, the calculation detail is explicitly presented. Altogether, the advanced evaluation method successfully accomplishes the preset objective and promotes the development of the MLAS theory and AHP as well.