There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of tra...There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of train-track time-variant system is put forward. Each vehicle is modeled as a multi-body system with 26 degrees of freedomand the action of coupler is also considered. The track structure is modeled as an assembly of track elements with 30degrees of freedom, then the spatially coupling vibration matrix equation of the train-track time-variant system is es-tablished on the basis of the principle of total potential energy with stationary value and the "set-in-right-position"rule. The track vertical geometric irregularity is considered as the excitation source of the vertical vibration of thesystem, and the hunting wave of car bogie frame is taken as the excitation source of lateral vibration of the system.The spatially coupling vibration matrix equation of the system is solved by Wilson-θ direct integration method. Theapproximation of the calculated results to the spot test results demonstrates the feasibility and effectiveness of thepresented analysis method. Finally, some other vibration responses of the system are also obtained.展开更多
In this paper, a new concept of simulation operating system (SIMOS) is described. A detailed definition of SIMOS is given, and two integrated simulation software (IPSOS and IMSS) are introduced based on SIMOS.
控制力矩陀螺(control moment gyroscope,CMG)框架伺服系统常受到外部扰动力矩和内部参数摄动等多源扰动影响,导致其控制性能降低,本文重点针对参数摄动对框架伺服系统造成的影响,提出了基于H_(2)/H_(∞)复合控制的CMG框架伺服系统扰动...控制力矩陀螺(control moment gyroscope,CMG)框架伺服系统常受到外部扰动力矩和内部参数摄动等多源扰动影响,导致其控制性能降低,本文重点针对参数摄动对框架伺服系统造成的影响,提出了基于H_(2)/H_(∞)复合控制的CMG框架伺服系统扰动抑制方法.在常规H_(∞)鲁棒控制方法中引入电机参数摄动量,在保证对外部力矩扰动具有鲁棒性的基础上,提升对内部参数摄动影响的抑制能力;结合H_(2)控制策略,提出基于状态反馈H_(2)/H_(∞)复合控制方法,在保证稳态性能的同时进一步提升系统动态响应速度.所提出的复合控制方法能够有效降低多源扰动导致的速度波动,提升系统的动态响应速度.展开更多
基金Project (50078006) supported by the National Natural Science Foundation of China Project (2001G029) supported by the Foundation of the Science and Technology Section of the Railway Bureau
文摘There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of train-track time-variant system is put forward. Each vehicle is modeled as a multi-body system with 26 degrees of freedomand the action of coupler is also considered. The track structure is modeled as an assembly of track elements with 30degrees of freedom, then the spatially coupling vibration matrix equation of the train-track time-variant system is es-tablished on the basis of the principle of total potential energy with stationary value and the "set-in-right-position"rule. The track vertical geometric irregularity is considered as the excitation source of the vertical vibration of thesystem, and the hunting wave of car bogie frame is taken as the excitation source of lateral vibration of the system.The spatially coupling vibration matrix equation of the system is solved by Wilson-θ direct integration method. Theapproximation of the calculated results to the spot test results demonstrates the feasibility and effectiveness of thepresented analysis method. Finally, some other vibration responses of the system are also obtained.
文摘In this paper, a new concept of simulation operating system (SIMOS) is described. A detailed definition of SIMOS is given, and two integrated simulation software (IPSOS and IMSS) are introduced based on SIMOS.
文摘控制力矩陀螺(control moment gyroscope,CMG)框架伺服系统常受到外部扰动力矩和内部参数摄动等多源扰动影响,导致其控制性能降低,本文重点针对参数摄动对框架伺服系统造成的影响,提出了基于H_(2)/H_(∞)复合控制的CMG框架伺服系统扰动抑制方法.在常规H_(∞)鲁棒控制方法中引入电机参数摄动量,在保证对外部力矩扰动具有鲁棒性的基础上,提升对内部参数摄动影响的抑制能力;结合H_(2)控制策略,提出基于状态反馈H_(2)/H_(∞)复合控制方法,在保证稳态性能的同时进一步提升系统动态响应速度.所提出的复合控制方法能够有效降低多源扰动导致的速度波动,提升系统的动态响应速度.