In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize...In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.展开更多
Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surf...Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.展开更多
To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-...To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).展开更多
A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide f...A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide for surface plasmon.Due to the guided wave SPR(GWSPR)modes,the index of the liquid phase samples can be measured more accurately than the conventional SPR sensors.Numerical simulation results show that the sensitivity of the sensor is about 5 times higher than the conventional SPR sensors.The origin of the enhancement mechanism is the combination of GWSPR in the Ag/PbS/GR hybrid nanostructure which enables the surface plasmon to spread along the PbS layer.In Ag/PbS/GR hybrid nanostructure,the electric field is concentrated mostly in the PbS layer,and the enhancement of the field intensity is nearly30%.展开更多
Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and t...Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and the small triangular silver nanoplate seeds added to the growth solution are the key factors to modulation absorption band of triangular silver nanoplates.The optical in-plane dipole surface plasmon resonance (SPR) bands of these Ag nanoplates can be tuned from 608 nm to 980 nm via tannin deoxidization method.The formation mechanism of triangular silver nanoplates was proposed.The tannin deoxidization method realizes a convenient modulation of the absorption band of Ag nanostructures within the visible near-infrared (IR) region both in aqueous solvent and on substrates under mild conditions.展开更多
Silver nanostructure compact aggregates on the surface of quartz glass substrates were synthesized by small gold seeds with the assistance of poly vinypyrrolidone (PVP) and irradiation of fluorescent lamp. The formati...Silver nanostructure compact aggregates on the surface of quartz glass substrates were synthesized by small gold seeds with the assistance of poly vinypyrrolidone (PVP) and irradiation of fluorescent lamp. The formation mechanism of silver nanostructure was proposed. The results show that both the PVP and the light irradiation are the keys to in-situ growth of silver nanostructure on quartz glass substrates. The silver nanostructure of the substrates which finally grow up to 150 nm after 20 h irradiation exhibits irregular shape, and some of nanoparticles stack to form bilayer. A new broad band appears in the absorption spectra of the substrates due to the interparticle dipole?dipole coupling of surface plasmon resonance response of the triangular silver nanoplate particles, which red shifts 600?800 nm as the particles grow up. The substrates have an emission band centered at 400 nm on their fluorescence spectra, and the fluorescence intensity shrinks as the average size of the silver nanostructure increases. The strongest SERS signal of SERS-active substrate is fabricated after 16 h.展开更多
A tunable plasmofluidic lens consisting of nanoslit arrays on a metal film is proposed for subwavelength imaging in far field at different wavelengths.The nanoslit arrays with constant depths but varying widths could ...A tunable plasmofluidic lens consisting of nanoslit arrays on a metal film is proposed for subwavelength imaging in far field at different wavelengths.The nanoslit arrays with constant depths but varying widths could generate desired optical phase retardations based on the propagation property of the surface plasmon polaritons(SPPs)through the metal-dielectric-metal(MDM)nanoslit waveguide.We demonstrate the tunability of the plasmofluidic lens for subwavelength imaging by changing the surrounding dielectric fluid.This work provides a novel approach for developing integrative tunable plasmofluidic lens for a variety of lab-on-chip applications.展开更多
Metallic nanostructures can support the strongly confined interface waves:surface plasmon polaritons(SPPs).SPPs have recently been used in a variety of applications due to their abilities to guide light in the scale o...Metallic nanostructures can support the strongly confined interface waves:surface plasmon polaritons(SPPs).SPPs have recently been used in a variety of applications due to their abilities to guide light in the scale of na-nometer.Whereas,intrinsic weak optical nonlinearities and short propagation lengths of SPPs hinder their applica-tions in novel active plasmonic devices.One promising solution is to couple SPPs to nonlinear optical resonances,such as excitons(Xs)in molecular or semiconducting nanostructures.Consequently,hybrid nanostructures containing J-aggregate molecules and metallic nanostructures have attracted considerable interest.In these systems,vacuum field fluctuations lead to a coherent ex-change of energy between ensembles of excitons and plasmons and the formation of new hybrid polariton states.Strong coupling between Xs and SPPs enables an efficient transfer of the strong optical nonlinearities of the excitonic emitters to the passive plasmonic nanostructures on the ultrashort time scale of femtosecond.展开更多
In this paper,we demonstrate an auto accurate alignment method to align mask-substrate in the prototype of plasmonic lithography(PL),which is essential for multilayer nanostructure fabrication with high resolution,low...In this paper,we demonstrate an auto accurate alignment method to align mask-substrate in the prototype of plasmonic lithography(PL),which is essential for multilayer nanostructure fabrication with high resolution,low cost,high efficiency,and high throughput,such as circuit manufacturing and other applications.We obtained an alignment signal with sensitivity better than 20 nm by using the Moiréfringe image.However,only using the Moiréfringes cannot guarantee the alignment of the mask and the substrate because the Moiréfringe repeats itself when the mask and substrate are offset by a fixed displacement.To eliminate the ambiguity,boxes and the crosses alignment marks are designed beside the grating marks on the substrate and the mask,respectively.A two-step alignment scheme including coarse alignment and fine alignment is explored in the auto alignment system.In the stage of coarse alignment,the edge detection algorithm based on Canny operator is adopted to detect the edges image effectively.In the process of fine alignment,Fourier transform based on Moiréfringe image is obtained to improve the alignment accuracy.In addition,experimental results of overlay indicate that PL can obtain sub-100 nm alignment accuracy over an area of 1 cm^2 using the proposed two-step alignment scheme.Via the substrate-mask mismatch compensation,better stages and precise environment control,it is expected that much higher overlay accuracy is feasible.展开更多
基金Supported by the National Natural Science Foundation of China(62174092)the Open Fund of State Key Laboratory of Infrared Physics(SITP-NLIST-ZD-2023-04)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)。
文摘In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.
基金supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+2 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi Province Intelligent Optoelectronic Sensing Application Technology Innovation CenterShanxi Province Optoelectronic Information Science and Technology Laboratory,Yuncheng University。
文摘Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.
基金Projects(20773165,20876179) supported by the National Natural Science Foundation of ChinaProject(09JJ1002) supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(NCET-07-0865) for New Century Excellent Talents in Chinese UniversityProject(2007AA022006) supported by the National High Technology Research and Development Program of China
文摘To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).
基金supported by Anhui University Natural Science Research Project,China(KJ2015A153)National Natural Science Foundation of China (11304002)
文摘A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide for surface plasmon.Due to the guided wave SPR(GWSPR)modes,the index of the liquid phase samples can be measured more accurately than the conventional SPR sensors.Numerical simulation results show that the sensitivity of the sensor is about 5 times higher than the conventional SPR sensors.The origin of the enhancement mechanism is the combination of GWSPR in the Ag/PbS/GR hybrid nanostructure which enables the surface plasmon to spread along the PbS layer.In Ag/PbS/GR hybrid nanostructure,the electric field is concentrated mostly in the PbS layer,and the enhancement of the field intensity is nearly30%.
基金Project(10804101) supported by the National Natural Science Foundation of ChinaProject(2007CB815102) supported by the National Basic Research Program of ChinaProject(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and the small triangular silver nanoplate seeds added to the growth solution are the key factors to modulation absorption band of triangular silver nanoplates.The optical in-plane dipole surface plasmon resonance (SPR) bands of these Ag nanoplates can be tuned from 608 nm to 980 nm via tannin deoxidization method.The formation mechanism of triangular silver nanoplates was proposed.The tannin deoxidization method realizes a convenient modulation of the absorption band of Ag nanostructures within the visible near-infrared (IR) region both in aqueous solvent and on substrates under mild conditions.
基金Projects(10804101,60908023)supported by the National Natural Science Foundation of ChinaProject(2007CB815102)supported by the National Basic Research Program of ChinaProject(2007B08007)supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Silver nanostructure compact aggregates on the surface of quartz glass substrates were synthesized by small gold seeds with the assistance of poly vinypyrrolidone (PVP) and irradiation of fluorescent lamp. The formation mechanism of silver nanostructure was proposed. The results show that both the PVP and the light irradiation are the keys to in-situ growth of silver nanostructure on quartz glass substrates. The silver nanostructure of the substrates which finally grow up to 150 nm after 20 h irradiation exhibits irregular shape, and some of nanoparticles stack to form bilayer. A new broad band appears in the absorption spectra of the substrates due to the interparticle dipole?dipole coupling of surface plasmon resonance response of the triangular silver nanoplate particles, which red shifts 600?800 nm as the particles grow up. The substrates have an emission band centered at 400 nm on their fluorescence spectra, and the fluorescence intensity shrinks as the average size of the silver nanostructure increases. The strongest SERS signal of SERS-active substrate is fabricated after 16 h.
文摘A tunable plasmofluidic lens consisting of nanoslit arrays on a metal film is proposed for subwavelength imaging in far field at different wavelengths.The nanoslit arrays with constant depths but varying widths could generate desired optical phase retardations based on the propagation property of the surface plasmon polaritons(SPPs)through the metal-dielectric-metal(MDM)nanoslit waveguide.We demonstrate the tunability of the plasmofluidic lens for subwavelength imaging by changing the surrounding dielectric fluid.This work provides a novel approach for developing integrative tunable plasmofluidic lens for a variety of lab-on-chip applications.
文摘Metallic nanostructures can support the strongly confined interface waves:surface plasmon polaritons(SPPs).SPPs have recently been used in a variety of applications due to their abilities to guide light in the scale of na-nometer.Whereas,intrinsic weak optical nonlinearities and short propagation lengths of SPPs hinder their applica-tions in novel active plasmonic devices.One promising solution is to couple SPPs to nonlinear optical resonances,such as excitons(Xs)in molecular or semiconducting nanostructures.Consequently,hybrid nanostructures containing J-aggregate molecules and metallic nanostructures have attracted considerable interest.In these systems,vacuum field fluctuations lead to a coherent ex-change of energy between ensembles of excitons and plasmons and the formation of new hybrid polariton states.Strong coupling between Xs and SPPs enables an efficient transfer of the strong optical nonlinearities of the excitonic emitters to the passive plasmonic nanostructures on the ultrashort time scale of femtosecond.
基金supported by the 973 Program of China (2013CBA01700)the National Natural Science Funds (61138002)
文摘In this paper,we demonstrate an auto accurate alignment method to align mask-substrate in the prototype of plasmonic lithography(PL),which is essential for multilayer nanostructure fabrication with high resolution,low cost,high efficiency,and high throughput,such as circuit manufacturing and other applications.We obtained an alignment signal with sensitivity better than 20 nm by using the Moiréfringe image.However,only using the Moiréfringes cannot guarantee the alignment of the mask and the substrate because the Moiréfringe repeats itself when the mask and substrate are offset by a fixed displacement.To eliminate the ambiguity,boxes and the crosses alignment marks are designed beside the grating marks on the substrate and the mask,respectively.A two-step alignment scheme including coarse alignment and fine alignment is explored in the auto alignment system.In the stage of coarse alignment,the edge detection algorithm based on Canny operator is adopted to detect the edges image effectively.In the process of fine alignment,Fourier transform based on Moiréfringe image is obtained to improve the alignment accuracy.In addition,experimental results of overlay indicate that PL can obtain sub-100 nm alignment accuracy over an area of 1 cm^2 using the proposed two-step alignment scheme.Via the substrate-mask mismatch compensation,better stages and precise environment control,it is expected that much higher overlay accuracy is feasible.