期刊文献+
共找到3,991篇文章
< 1 2 200 >
每页显示 20 50 100
基于GWO-SVM的测井岩性识别模型研究——以鄂尔多斯盆地榆林南气田山西组为例
1
作者 董凤娟 李昆昆 +4 位作者 费世祥 王京舰 周超 任大忠 卢学飞 《地质与勘探》 北大核心 2025年第4期872-880,共9页
鄂尔多斯盆地榆林南气田山西组地层发育一套以砂岩和泥岩为主、夹少量煤层的沉积序列,是该区油气勘探开发的重要目标层位。为提高岩性识别效率与精度,本研究采用随机森林算法(Random Forest)开展测井参数敏感性分析,优选出自然伽马(GR)... 鄂尔多斯盆地榆林南气田山西组地层发育一套以砂岩和泥岩为主、夹少量煤层的沉积序列,是该区油气勘探开发的重要目标层位。为提高岩性识别效率与精度,本研究采用随机森林算法(Random Forest)开展测井参数敏感性分析,优选出自然伽马(GR)、补偿中子(CNL)、声波时差(AC)和密度(DEN)4个对岩性响应敏感的特征参数。研究共提取865组样本数据(每组样本有4维测井属性、1维岩性标签),其中70%作为训练样本,其余30%作为测试样本。通过对比BP神经网络、支持向量机(SVM)、粒子群优化支持向量机(PSO-SVM)和灰狼优化支持向量机(GWOSVM)等机器学习方法,建立了山西组3种主要岩性的智能识别模型,并结合岩性剖面进行验证分析。结果表明,灰狼算法优化的支持向量机模型(GWO-SVM)表现最优,其识别准确率达93.4%,召回率和F1值分别为93.0%和93.6%,各项评价指标均优于对比模型,展现出更高的识别精度、更好的综合性能与可靠性。 展开更多
关键词 岩性识别 测井响应 机器学习 GWO-svm 山西组 榆林南气田 鄂尔多斯盆地
在线阅读 下载PDF
局部密度最小不确定性的SVM样本选择算法
2
作者 周玉 刘虹瑜 +2 位作者 李京京 丁红强 白磊 《哈尔滨工业大学学报》 北大核心 2025年第8期45-56,共12页
为解决支持向量机(SVM)在分类时通常含有大量的冗余样本,从而导致面对较大规模数据集时SVM计算复杂度受到限制的问题,提出一种局部密度最小不确定性的SVM样本选择算法。该方法对决策面影响较大的边界数据进行有效选择,通过提取可能含有... 为解决支持向量机(SVM)在分类时通常含有大量的冗余样本,从而导致面对较大规模数据集时SVM计算复杂度受到限制的问题,提出一种局部密度最小不确定性的SVM样本选择算法。该方法对决策面影响较大的边界数据进行有效选择,通过提取可能含有支持向量的训练样本,降低计算开销,进而提高SVM性能。首先,计算训练样本的K互近邻个数与高斯核密度估计。其次,将K互近邻个数与高斯核密度估计进行加和得到每个样本点的K局部密度并获取密度矩阵。然后,利用局部密度不确定性平衡优化方法,将密度矩阵进行三值映射后使不确定性改变量达到最小时得到最优阈值,并划分密度矩阵为中心数据与边界数据。最后,提取边界数据并作为SVM的训练样本建立分类模型。结果表明:利用该方法在UCI数据集上与其他6种常用样本选择方法进行实验对比,以准确率、保存率作为性能指标,文中提出的算法可以迅速划分中心数据与边界数据并删除大量冗余的训练样本,有效降低SVM的训练负担的同时提高了分类性能。 展开更多
关键词 支持向量机(svm) 样本选择 局部密度 不确定性平衡 分类
在线阅读 下载PDF
基于BOA-SVM的冷源系统温度传感器偏差故障检测
3
作者 周璇 闫学成 +1 位作者 闫军威 梁列全 《控制理论与应用》 北大核心 2025年第5期921-930,共10页
针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性... 针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性故障数据,同时克服了SVM算法对核函数参数与惩罚因子强敏感性的问题.论文建立了广州市某办公建筑冷源系统Trnsys仿真模型,对室外干球、冷冻供水与冷却进水3种温度传感器不同程度的偏差故障进行模拟.仿真结果表明,与本文提出的其他方法相比,该方法准确率高,泛化能力及鲁棒性强,能够满足冷源系统温度传感器偏差故障的检测需求,保障空调系统的安全、高效与稳定运行. 展开更多
关键词 冷源系统 温度传感器 贝叶斯优化 支持向量机 故障检测 TRNSYS
在线阅读 下载PDF
深基坑开挖致高铁桥墩位移的SVM预测方法
4
作者 宋旭明 李小龙 +2 位作者 唐冕 王天良 程丽娟 《浙江大学学报(工学版)》 北大核心 2025年第6期1233-1240,1252,共9页
为了研究邻近基坑开挖引起的高铁桥梁墩顶附加位移对铁路运营安全的影响,依托某深基坑开挖工程,建立考虑地下水影响的土体-桥梁三维有限元模型.分析高铁桥墩附加位移的单因素敏感性.采用Box-Behnken design(BBD)试验设计方法结合支持向... 为了研究邻近基坑开挖引起的高铁桥梁墩顶附加位移对铁路运营安全的影响,依托某深基坑开挖工程,建立考虑地下水影响的土体-桥梁三维有限元模型.分析高铁桥墩附加位移的单因素敏感性.采用Box-Behnken design(BBD)试验设计方法结合支持向量机算法(SVM)建立高铁桥墩墩顶位移预测模型,结合蒙特卡洛法,对参数进行107次抽样计算,得到墩顶附加位移的可靠概率.研究结果表明:基坑与高铁桥墩距离的变化对墩顶横向位移和竖向位移的影响最大.在8组不同超参数组合的SVM模型中,最优模型的预测值与有限元计算值的最大误差小于6%,最优模型可代替有限元进行计算.在墩顶横向位移为2 mm的限值下,背景工程基坑与桥墩距离为35 m时,墩顶横向附加位移的可靠概率为33.12%;当基坑与桥墩距离增加到39 m时,墩顶横向附加位移的可靠概率为99.68%.所采用的分析方法可以削减因土层力学参数离散性大而产生的评估结果不确定性,为类似工程的安全评估提供参考. 展开更多
关键词 高速铁路 深基坑 墩顶附加位移 支持向量机(svm) 可靠度
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
5
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
基于RTSWMFE,IS-GSE与COOT-SVM的行星齿轮箱故障诊断
6
作者 戚晓利 杨艳 +1 位作者 崔创创 程主梓 《振动.测试与诊断》 北大核心 2025年第1期132-139,205,共9页
针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃pre... 针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃preserving manifold embedding,简称IS⁃GSE)和白骨顶优化算法支持向量机(coot optimization algorithm support vector machine,简称COOT⁃SVM)的行星齿轮箱故障诊断方法。首先,利用RTSWMFE提取高维故障特征信息;其次,采用IS⁃GSE对高维特征进行降维,提取出敏感、低维的特征;最后,将低维特征输入COOT⁃SVM中进行识别分类。行星齿轮箱故障诊断实验结果表明:IS⁃GSE方法采用余弦相似度与欧式距离相结合的距离度量方式,并融入监督学习思想,降维效果较佳;COOT⁃SVM方法对经RTSWMFE和IS⁃GSE二次提取的故障特征识别精度达到100%。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移加权多尺度模糊熵 改进监督型几何和统计保持流形嵌入 白骨顶优化算法优化支持向量机
在线阅读 下载PDF
基于SOA-SVM模型的光伏阵列故障诊断研究 被引量:1
7
作者 孙培胜 陈堂贤 +1 位作者 程陈 李正 《电源学报》 北大核心 2025年第1期143-150,共8页
针对支持向量机SVM(support vector machine)用于光伏阵列故障诊断时准确率不高、且易受核函数与惩罚因子参数影响的问题,提出1种基于海鸥优化算法SOA(seagull optimization algorithm)支持向量机的光伏阵列故障诊断方法。引入海鸥优化... 针对支持向量机SVM(support vector machine)用于光伏阵列故障诊断时准确率不高、且易受核函数与惩罚因子参数影响的问题,提出1种基于海鸥优化算法SOA(seagull optimization algorithm)支持向量机的光伏阵列故障诊断方法。引入海鸥优化算法对SVM模型进行参数寻优,建立基于最优参数的SOA-SVM故障诊断模型;利用MATLAB软件搭建光伏阵列仿真模型,提取不同故障类型下的特征参数并输入到SOA-SVM模型进行故障诊断。实验结果表明:经SOA优化后的SVM模型故障诊断准确率显著提高,且相比于基于人工蜂群ABC(artificial bee colony)算法的ABC-SVM模型和基于粒子群优化PSO(particle swarm optimization)算法的PSO-SVM模型,SOA-SVM模型具有更快的寻优收敛迭代速度和更高的故障诊断准确率。 展开更多
关键词 光伏阵列 故障诊断 海鸥优化算法 支持向量机
在线阅读 下载PDF
基于GRA-EPSO-SVM模型的露天矿山爆破振动速度预测
8
作者 张鹏飞 袁永 +8 位作者 何运华 代少军 李佳臻 迟学海 李伟 孙雪 张焦 白润才 费鸿禄 《煤炭科学技术》 北大核心 2025年第7期105-115,共11页
露天矿爆破振动峰值是评价爆破效果的主要指标。在露天矿煤岩互层爆破场景下,针对现有的爆破振动峰值预测方法难以达到理想的预测结果,导致爆破参数、起爆网络设计不合理等问题,提出了一种灰色关联度特征选取下基于集成粒子群优化支持... 露天矿爆破振动峰值是评价爆破效果的主要指标。在露天矿煤岩互层爆破场景下,针对现有的爆破振动峰值预测方法难以达到理想的预测结果,导致爆破参数、起爆网络设计不合理等问题,提出了一种灰色关联度特征选取下基于集成粒子群优化支持向量机算法(GRA-EPSO-SVM)的爆破振动速度峰值预测模型。以元宝山露天煤矿不同赋存条件下的煤岩爆破为背景,选取孔距、排距、孔深、单段最大装药量、最小抵抗线、爆心距、高程差、质点振速峰值作为输入参数,采用灰色关联分析法(GRA)过滤影响爆破振动速度峰值的冗余因素(孔深、单段最大装药量、最小抵抗线、质点振速峰值);运用集成粒子群算法(EPSO)优化SVM算法的关键参数C和g,将参数输入到GRA-EPSOSVM模型中进行评估。结果表明:GRA-EPSO-SVM组合算法对比改进的萨道夫斯基公式、SVM的预测值和实际值更为吻合,平均误差分别降低15.3%和106.8%,预测结果的精度更高,更能有效预测露天矿煤岩互层爆破振动峰值,为露天矿开采爆破施工安全控制提供帮助。 展开更多
关键词 露天矿 振动峰值 灰色关联分析 优化支持向量机 GRA-EPSO-svm模型
在线阅读 下载PDF
基于精细化多尺度Kolmogorov熵与WOA-SVM的滚动轴承故障诊断
9
作者 李希垒 王冰 +1 位作者 胡雄 金鑫 《机床与液压》 北大核心 2025年第8期18-27,共10页
为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,... 为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,以此定量表征信号在不同分辨率下的复杂度。针对多分类支持向量机模型参数敏感问题,引入鲸鱼优化算法(WOA)优化惩罚因子和核函数参数,构建最优WOA-SVM模型。最后,基于江南大学数据集的实验表明:该方法能够有效分析参数对模型稳定性的影响,并在不平衡样本集上实现高精度故障诊断;与KNN、DT等模型及不同特征输入方法相比,所提方法计算速度快、诊断效率高,具有显著优越性。 展开更多
关键词 滚动轴承 故障诊断 特征选择 支持向量机 多尺度分析 Kolmogorov熵
在线阅读 下载PDF
基于改进JSOA-SVM的地铁站台门故障诊断
10
作者 王若凡 朱松青 +2 位作者 杨柳 郝飞 徐涛 《噪声与振动控制》 北大核心 2025年第2期112-117,125,共7页
为准确地对地铁站台门进行故障诊断,并针对支持向量机(Support Vector Machine,SVM)在故障诊断中的参数选择问题,将跳蛛算法(Jumping Spider Optimization Algorithm,JSOA)用于SVM参数优化提升诊断性能,同时针对JSOA易陷入局部最优、收... 为准确地对地铁站台门进行故障诊断,并针对支持向量机(Support Vector Machine,SVM)在故障诊断中的参数选择问题,将跳蛛算法(Jumping Spider Optimization Algorithm,JSOA)用于SVM参数优化提升诊断性能,同时针对JSOA易陷入局部最优、收敛速度慢等不足,提出一种多策略改进跳蛛算法(Improved Jumping Spider Optimization Algorithm,IJSOA)优化SVM的站台门故障诊断方法。首先使用Teager能量算子、变分模态分解(Variational Mode Decomposition,VMD)以及精细复合多尺度模糊熵(Refined Composite Multiscale Fuzzy Entropy,RCMFE)提取信号特征;其次,通过IJSOA寻找SVM最优参数组合构建诊断模型;最后,使用提取的特征向量输入诊断模型实现站台门故障诊断。结果表明提出方法平均识别率为97.774%,诊断精度较其余几种方法更具优势,能够有效提升故障诊断分类效果。 展开更多
关键词 故障诊断 地铁站台门系统 变分模态分解(VMD) 跳蛛优化算法(JSOA) 支持向量机(svm)
在线阅读 下载PDF
INRBO-SVM模型在边坡安全系数预测中的应用
11
作者 熊朝林 陈俊智 《矿冶工程》 北大核心 2025年第2期20-25,33,共7页
针对支持向量机(SVM)模型在预测边坡安全系数中选取参数困难的问题,优化牛顿-拉夫逊算法(NRBO)帮助SVM模型快速选取适当的超参数。引入动态反向学习策略、横向与纵向交叉策略和修正自适应系数计算公式对NRBO算法进行改进,构建INRBO-SVM... 针对支持向量机(SVM)模型在预测边坡安全系数中选取参数困难的问题,优化牛顿-拉夫逊算法(NRBO)帮助SVM模型快速选取适当的超参数。引入动态反向学习策略、横向与纵向交叉策略和修正自适应系数计算公式对NRBO算法进行改进,构建INRBO-SVM边坡安全系数预测模型。选取容重、黏聚力、内摩擦角、边坡角、边坡高度和孔隙水压比6个因素为模型输入,安全系数为输出,将训练后的INRBO-SVM模型、NRBO-SVM模型、SVM模型、RBF模型对9组测试样本进行安全系数预测。结果表明:INRBO-SVM模型安全系数预测性能最好,相关系数R^(2)为0.9999,高于其他模型;均方根误差和平均绝对误差均显著低于其他模型。工程应用结果表明,INRBO-SVM模型的安全系数预测误差均小于10%,大部分低于5%,证实了该模型预测安全系数的准确性以及实际应用价值。 展开更多
关键词 边坡稳定性 预测模型 安全系数 svm模型 INRBO算法 机器学习
在线阅读 下载PDF
基于SVDD和SVM的高压调门油动机状态监测系统研究
12
作者 马立强 姜安琦 +2 位作者 姜万录 郑云飞 吴凤和 《振动与冲击》 北大核心 2025年第12期238-248,共11页
在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SV... 在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SVDD)异常检测和支持向量机(support vector machine,SVM)故障诊断的高压调门油动机状态监测系统。首先,从原始数据中提取时域(time domain,T)、频域(frequency domain,F)和时频域小波包子带能量(wavelet packet subband energy,W)特征,并通过特征融合及归一化的方式形成新的多维融合特征向量TFW。随后,采用卷积神经网络(convolutional neural network,CNN)对TFW进行深层次挖掘,生成更具表现力的特征TFWCNN,以此作为SVDD和SVM模型的输入。搭建了高压调门油动机故障模拟试验台,用以采集数据并验证该方法的有效性。研究结果表明:在三个具有不同阀位开度的高压调门油动机动态数据集上,SVDD异常检测的F1分数分别达到0.9991、0.9978和0.9760;SVM故障诊断的F1分数分别为0.9988、0.9950和0.9867;不仅说明该方法在高压调门油动机的状态监测中表现出的优异性能,同时也说明深度TFWCNN特征在高压调门油动机状态监测中的有效性和准确性;还为类似的汽轮机状态监测诊断系统提供了一种有效的技术方案。 展开更多
关键词 高压调门油动机 支持向量数据描述(SVDD)异常检测 支持向量机(svm)故障诊断 状态监测系统
在线阅读 下载PDF
基于CNN-SVM的行人活动识别方法 被引量:1
13
作者 张帅 李召洋 +1 位作者 陈建广 黄风华 《导航定位学报》 北大核心 2025年第1期87-93,共7页
针对传统行人活动识别方法过度依赖人工手动选择和提取特征,导致特征提取难度大及识别准确率低的问题,提出一种基于卷积神经网络结合支持向量机(CNN-SVM)的行人活动识别模型:将数据输入到卷积神经网络(CNN)与归一化指数函数(Softmax)层... 针对传统行人活动识别方法过度依赖人工手动选择和提取特征,导致特征提取难度大及识别准确率低的问题,提出一种基于卷积神经网络结合支持向量机(CNN-SVM)的行人活动识别模型:将数据输入到卷积神经网络(CNN)与归一化指数函数(Softmax)层相结合的网络中进行训练直至网络收敛,收敛的CNN网络用于自动提取行人活动数据特征;然后利用支持向量机(SVM)取代CNN网络的归一化指数函数(Softmax)层来优化分类效果。实验结果表明,所提出的CNN-SVM模型可达到97.77%的识别准确率,优于对比实验模型,具有较好的行人活动识别效果。 展开更多
关键词 行人活动识别 卷积神经网络(CNN) 支持向量机(svm) 惯性传感器 深度学习
在线阅读 下载PDF
煤层顶板涌水量TCN-LSTM-SVM时间序列预测模型构建与应用
14
作者 刘譞 姬亚东 +6 位作者 朱开鹏 赵春虎 李凯 李超峰 袁晨瀚 李盼盼 闫鹏珍 《煤田地质与勘探》 北大核心 2025年第6期201-211,共11页
【背景】矿井涌水量的准确预测对于煤矿水害防治、安全高效生产起着重要的作用。【方法】为构建适用于西部受巨厚砂岩含水层水害威胁矿井的涌水量预测模型,以受该种水害严重影响的陕西彬长矿区某典型矿井为研究对象,基于工作面回采进尺... 【背景】矿井涌水量的准确预测对于煤矿水害防治、安全高效生产起着重要的作用。【方法】为构建适用于西部受巨厚砂岩含水层水害威胁矿井的涌水量预测模型,以受该种水害严重影响的陕西彬长矿区某典型矿井为研究对象,基于工作面回采进尺与涌水量数据之间的相关关系,选取其作为矿井涌水量时间序列预测的特征变量,提出基于时域卷积网络(temporal convolutional networks,TCN)的长短期记忆网络(long-short term memory,LSTM)−支持向量机(support vector machines,SVM)矿井工作面涌水量耦合预测模型,即TCN-LSTM-SVM模型。该模型首先通过TCN框架对原数据进行处理,提取回采进尺与涌水量之间的依赖关系和动态特征,随后将提取特征输出到后续的LSTMSVM组合模型,以进一步捕捉回采进尺与涌水量之间的时序关系和特征。【结果】模型训练与预测结果显示:TCN-LSTM-SVM耦合模型的训练集、验证集和测试集的平均绝对误差(E_(MA))为56.02~129.89 m^(3)/h,平均绝对百分比误差(E_(MAP))为3%~7%,均方根误差(E_(RMS))为82.60~162.61 m^(3)/h,决定系数(R^(2))为0.81~0.98,预测结果较BP神经网络、随机森林(RF)、Transformer等常用预测模型的准确度更高,并且避免了其中多数模型在验证集和测试集中出现的误差过大的情况。研究发现,该耦合模型既具备TCN模型的并行处理优势和多尺度特征提取能力,同时也具备LSTM-SVM组合模型优秀的预测性能和泛化能力,针对研究矿井的工作面涌水量预测与以往模型相比具有一定的优越性和适用性。【结论】研究成果为矿区相似地质条件的矿井涌水量预测提供了新的方法,对该矿地质条件类似的工作面涌水量预测以及防治水工作有一定的现实意义。 展开更多
关键词 矿井水害 煤层顶板 涌水量预测 时域卷积网络 长短期记忆网络 支持向量机 陕西彬长矿区
在线阅读 下载PDF
基于SVM-SARIMA-LSTM模型的城市用水量实时预测
15
作者 李轩 吴永强 +2 位作者 王佳伟 杨伟超 张天洋 《水电能源科学》 北大核心 2025年第3期36-39,6,共5页
为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋... 为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋势部分与气温、降水、风速、气压和相对湿度5个气象因素之间的关系,利用长短时记忆网络(LSTM)对波动性明显的残差部分进行关系捕捉,构建了SVM-SARIMA-LSTM用水量实时预测模型,并利用衡水市3个月时用水量数据和气象数据训练SVM-SARIMA-LSTM模型,以随后1周的实测数据作为验证集对模型预测性能进行评估。结果表明,SVM-SARIMA-LSTM模型的平均绝对百分比误差(E_(MAP))比SARIMA模型低4.502%,均方根误差(E_(RMSE))降低了39.084%,确定系数R^(2)提高了9.965%,最大绝对误差(E_(maxA))减小了55.946%,具有较好的应用价值。所建模型通过整合关键气象因素,准确地捕捉到城市用水量的季节性趋势及非季节性波动,展现了优良的泛化性。 展开更多
关键词 SARIMA模型 支持向量机 长短时记忆神经网络 svm-SARIMA-LSTM模型 STL分解程序 气象因素 用水量预测
在线阅读 下载PDF
基于BWO-SVM的AUV推进系统液压故障诊断
16
作者 彭浩 李维波 +1 位作者 黄康政 高俊卓 《机床与液压》 北大核心 2025年第3期199-203,共5页
自主水下机器人(AUV)作为海洋探测的重要工具,在执行复杂任务时,其推进系统的可靠性至关重要。针对AUV推进系统液压故障诊断困难、经常误判和漏判等问题,提出基于白鲸优化算法(BWO)优化支持向量机(SVM)的故障诊断算法BWO-SVM,对AUV推进... 自主水下机器人(AUV)作为海洋探测的重要工具,在执行复杂任务时,其推进系统的可靠性至关重要。针对AUV推进系统液压故障诊断困难、经常误判和漏判等问题,提出基于白鲸优化算法(BWO)优化支持向量机(SVM)的故障诊断算法BWO-SVM,对AUV推进系统液压故障进行智能化诊断。在AMESim中搭建AUV推进系统,然后模拟不同故障并采集相关数据,并采用BWO优化SVM的超参数,最后实现了液压故障诊断分类预测。实验结果表明:BWO-SVM能够区分不同的故障,有效诊断AUV推进系统潜在的液压故障。为了验证算法的优越性,与6种基准算法进行对比,BWO-SVM的准确率至少提升7.35%。BWO-SVM算法在故障诊断方面具有更高的准确率,有效提升了AUV的安全性和可靠性。 展开更多
关键词 自主水下机器人(AUV) 推进系统 故障诊断 白鲸优化算法(BWO) 支持向量机(svm)
在线阅读 下载PDF
基于TDEGWO-SVM的滚动轴承故障诊断
17
作者 邢鑫 王亮 耿耿 《计算机应用》 北大核心 2025年第S1期349-353,共5页
作为海上油气生产平台动设备的关键零部件,轴承的性能与动设备的工作状态强相关。针对动设备轴承故障诊断中单类型特征表征不全面、模型优化效率低、模型易陷入局部最优值和变转速工况故障诊断应用较少的问题,提出一种基于Tent混沌映射... 作为海上油气生产平台动设备的关键零部件,轴承的性能与动设备的工作状态强相关。针对动设备轴承故障诊断中单类型特征表征不全面、模型优化效率低、模型易陷入局部最优值和变转速工况故障诊断应用较少的问题,提出一种基于Tent混沌映射差分进化灰狼优化和支持向量机(TDEGWO-SVM)的滚动轴承故障诊断模型。首先,从轴承振动信号中提取时域特征、变分模态分解(VMD)能量熵特征和分形维数特征,并在此基础上构建数据集;其次,针对传统灰狼优化(GWO)算法存在的早熟收敛和对复杂问题的收敛精度较低的问题,引入Tent混沌映射和差分进化(DE)思想,构建Tent混沌映射差分进化灰狼优化(TDEGWO)算法实现高斯核支持向量机(SVM)模型参数的自适应寻优;最后,通过凯斯西储大学的轴承振动数据集验证所提模型的性能。实验结果表明,相较于极端梯度提升树(XGBoost)、随机森林和自编码器(AE)网络等对比模型,基于TDEGWO-SVM的故障诊断模型能有效实现滚动轴承的多工况故障诊断。 展开更多
关键词 故障诊断 支持向量机 Tent混沌映射 差分进化 灰狼优化 分形维数
在线阅读 下载PDF
基于TLBO-LIBSVM的联合收割机振动筛螺栓故障诊断
18
作者 李鹏程 顾新阳 +2 位作者 梁亚权 章浩 唐忠 《农机化研究》 北大核心 2025年第5期28-33,42,共7页
联合收割机振动筛工作时的瞬时冲击与交变载荷易导致振动筛螺栓结构发生失效。为解决联合收割机振动筛螺栓故障诊断问题,提出了一种基于多元特征融合TLBO-LIBSVM的振动筛螺栓失效故障诊断方法,通过提取特征矩阵,分别将时域特征、频域特... 联合收割机振动筛工作时的瞬时冲击与交变载荷易导致振动筛螺栓结构发生失效。为解决联合收割机振动筛螺栓故障诊断问题,提出了一种基于多元特征融合TLBO-LIBSVM的振动筛螺栓失效故障诊断方法,通过提取特征矩阵,分别将时域特征、频域特征、WOA-VMD能量熵特征组合归一化得到多元融合高维特征矩阵,导入经验参数LIBSVM模型,得到的成功率分别为64.44%、74.44%、81.11%、90%。结果表明:随着特征矩阵维数不断增加,失效特征信息不断完善,识别成功率不断提升,也验证了联合收割机振动筛螺栓频域特征敏感性高于时域特征。通过运用TLBO算法对LIBSVM模型超参数进行优化,得到最佳参数组合下的识别成功率为98.89%,完成了联合收割机振动筛螺栓失效故障的高精度识别,可为联合收割机振动筛螺栓故障的精确诊断提供参考。 展开更多
关键词 振动筛螺栓 变分模态分解 鲸鱼优化算法 支持向量机模型 教与学优化算法 故障诊断
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
19
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于改进CNN-SVM的井下钻头磨损状态评估研究 被引量:3
20
作者 李玉梅 邓杨林 +3 位作者 李基伟 李乾 杨磊 于丽维 《石油机械》 北大核心 2024年第6期12-19,共8页
现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采... 现有钻头磨损评估方法中,存在人工特征提取过程可能无法完全提取正确分类所需的信号动态特征,及需要对各个统计量进行大量计算等问题。为此,提出了一种新的基于改进卷积神经网络支持向量机(CNN-SVM)的钻头磨损程度评估算法。该算法将采集的近钻头原始振动数据导入CNN-Softmax模型,通过训练好的CNN模型从近钻头数据中提取主要的特征参数,将提取的稀疏特征向量输入SVM并进行故障分类,利用遗传算法实现SVM参数的优化选择,最后应用t分布随机邻域法近邻嵌入,使其故障特征学习过程可视化,以评估其特征提取能力。采用该算法对钻头磨损的现场试验数据进行了分析。分析结果表明:基于改进CNN-SVM的井下钻头磨损状态评估算法准确率高达98.33%。所得结论可为实现钻头磨损状态的进一步监测提供理论支撑。 展开更多
关键词 钻头磨损状态评估 卷积神经网络 支持向量机 特征提取可视化 平均池化采样
在线阅读 下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部