With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni...With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.展开更多
The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influen...The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.展开更多
In the preparation of catalyst for propylene polymerization, the Mg(OEt) 2 support was activated with ethanol/CO 2 system followed by solidification, and treated with TiCl 4 in the presence of ethylbenzoate as an inte...In the preparation of catalyst for propylene polymerization, the Mg(OEt) 2 support was activated with ethanol/CO 2 system followed by solidification, and treated with TiCl 4 in the presence of ethylbenzoate as an internal donor(ID). The chemical compositions of the activated support and the prepared catalyst were examined in detail. During the dissolution of Mg(OEt) 2 support in ethanol medium with CO 2 bubbling, the structure of support changed to magnesium hydrocarbyl carbonate, (CH 3CH 2O) 2- x Mg(O (C O) OCH 2CH 3) x ( x = 1,2). The content of carbonated CO 2 in the activated support was dependent on the heat treatment in the solidification of support. In the preparation procedure of polymerization catalyst, the activated support was treated with TiCl 4 so that the structure of support was converted to MgCl 2 with the incorporation of ID. The polymerization behavior of the pre-pared catalyst was also studied in the presence of phenyltriethoxysilane as an external donor.展开更多
Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional therm...Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional thermal reduction method for inducing SMSI processes is often accompanied by undesirable structural evolution of metal NPs.In this study,a mild electrochemical method has been developed as a new approach to induce SMSI,using the cable structured core@shell CNT@SnO_(2) loaded Pt NPs as a proof of concept.The induced SnO_(x) encapsulation layer on the surface of Pt NPs can protect Pt NPs from the poisoned of CO impurity in hydrogen oxidation reaction(HOR),and the HOR current density could still maintain 85% for 2000 s with 10,000 ppm CO in H_(2),while the commercial Pt/C is completely inactivated.In addition,the electrons transfer from SnO_(x) to Pt NPs improved the HOR activity of the E-Pt-CNT@SnO_(2),achieving the excellent exchange current density of 1.55 A·mgPt^(-1).In situ Raman spectra and theoretical calculations show that the key to the electrochemical-method-induced SMSI is the formation of defects and the migration of SnO_(x) caused by the electrochemical redox operation,and the weakening the SneO bond strength by Pt NPs.展开更多
The MgCl2/SiO2 complex support was prepared by spray drying using alcoholic suspension which contained MgCl2 and SiO2. The complex support reacted with TiCl4 and di-n-butyl phthalate, give the catalyst for propylene p...The MgCl2/SiO2 complex support was prepared by spray drying using alcoholic suspension which contained MgCl2 and SiO2. The complex support reacted with TiCl4 and di-n-butyl phthalate, give the catalyst for propylene polymerization. The catalyst was spherical and porous with high specific surface area. The multistage polymerization of propylene for high impact propylene was studied with the catalyst system. It was found that the final high impact polypropylene after two stages of reaction was still freeflowing, spherical granules. Homopolypropylene with pore diameter between 100 nm and 10000 nm was suitable for EPR to fill in during ethylene-propylene copolymerization. The high impact polypropylene showed good balance between stiffness and toughness.展开更多
基金supported by the Natural Science Foundation of Shanxi Province(202203021221155)the Foundation of National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal(J23-24-902)。
文摘With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.
基金supported by the National Natural Science Foundation of China(22376063,21976057)the Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A05)Fundamental Research Funds for the Central Universities.
文摘The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.
文摘In the preparation of catalyst for propylene polymerization, the Mg(OEt) 2 support was activated with ethanol/CO 2 system followed by solidification, and treated with TiCl 4 in the presence of ethylbenzoate as an internal donor(ID). The chemical compositions of the activated support and the prepared catalyst were examined in detail. During the dissolution of Mg(OEt) 2 support in ethanol medium with CO 2 bubbling, the structure of support changed to magnesium hydrocarbyl carbonate, (CH 3CH 2O) 2- x Mg(O (C O) OCH 2CH 3) x ( x = 1,2). The content of carbonated CO 2 in the activated support was dependent on the heat treatment in the solidification of support. In the preparation procedure of polymerization catalyst, the activated support was treated with TiCl 4 so that the structure of support was converted to MgCl 2 with the incorporation of ID. The polymerization behavior of the pre-pared catalyst was also studied in the presence of phenyltriethoxysilane as an external donor.
基金the“National Natural Science Foundation of China(No.22122202)”.
文摘Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional thermal reduction method for inducing SMSI processes is often accompanied by undesirable structural evolution of metal NPs.In this study,a mild electrochemical method has been developed as a new approach to induce SMSI,using the cable structured core@shell CNT@SnO_(2) loaded Pt NPs as a proof of concept.The induced SnO_(x) encapsulation layer on the surface of Pt NPs can protect Pt NPs from the poisoned of CO impurity in hydrogen oxidation reaction(HOR),and the HOR current density could still maintain 85% for 2000 s with 10,000 ppm CO in H_(2),while the commercial Pt/C is completely inactivated.In addition,the electrons transfer from SnO_(x) to Pt NPs improved the HOR activity of the E-Pt-CNT@SnO_(2),achieving the excellent exchange current density of 1.55 A·mgPt^(-1).In situ Raman spectra and theoretical calculations show that the key to the electrochemical-method-induced SMSI is the formation of defects and the migration of SnO_(x) caused by the electrochemical redox operation,and the weakening the SneO bond strength by Pt NPs.
文摘The MgCl2/SiO2 complex support was prepared by spray drying using alcoholic suspension which contained MgCl2 and SiO2. The complex support reacted with TiCl4 and di-n-butyl phthalate, give the catalyst for propylene polymerization. The catalyst was spherical and porous with high specific surface area. The multistage polymerization of propylene for high impact propylene was studied with the catalyst system. It was found that the final high impact polypropylene after two stages of reaction was still freeflowing, spherical granules. Homopolypropylene with pore diameter between 100 nm and 10000 nm was suitable for EPR to fill in during ethylene-propylene copolymerization. The high impact polypropylene showed good balance between stiffness and toughness.