With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirement...With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable.展开更多
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl...As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.展开更多
模型辅助检测概率(model-assisted probability of detection,MAPoD)和灵敏度分析对于量化涡流无损检测(eddy current nondestructive testing,ECNDT)系统的检测能力非常重要。由于不确定性在涡流无损检测的MAPoD和SA问题中的传播,传统...模型辅助检测概率(model-assisted probability of detection,MAPoD)和灵敏度分析对于量化涡流无损检测(eddy current nondestructive testing,ECNDT)系统的检测能力非常重要。由于不确定性在涡流无损检测的MAPoD和SA问题中的传播,传统基于实验方法和物理仿真模型对该问题的分析需要耗费大量的时间和人力成本,为了降低这些成本,提出基于粒子群算法(particle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)模型取代传统的实验方法以及物理仿真模型,对涡流无损检测模型的响应进行预测,从而加速MAPoD和SA问题的分析。此外,创新性地将网格搜索、随机搜索、模拟退火算法和PSO等优化算法与SVR相结合,研究不同的优化算法对SVR的关键参数优化的精度和效率,验证PSO相较于其他优化算法的性能优势。最后,将PSO-SVR模型应用于ECNDT算例中,对表面裂缝长度的不确定性进行MAPoD和SA的分析。结果表明,所提算法在保证求解精度的同时,加速了涡流无损检测系统的MAPoD和SA问题的研究,并减少了计算开销。在计算量方面,对这两个问题的求解,平均分别仅需纯物理模型计算量的3.5%和0.06%。展开更多
当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究...当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。展开更多
Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs l...Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.展开更多
为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发...为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。展开更多
This paper describes a novel approach for identifying the Z-axis drift of the ring laser gyroscope (RLG) based on ge-netic algorithm (GA) and support vector regression (SVR) in the single-axis rotation inertial ...This paper describes a novel approach for identifying the Z-axis drift of the ring laser gyroscope (RLG) based on ge-netic algorithm (GA) and support vector regression (SVR) in the single-axis rotation inertial navigation system (SRINS). GA is used for selecting the optimal parameters of SVR. The latitude error and the temperature variation during the identification stage are adopted as inputs of GA-SVR. The navigation results show that the proposed GA-SVR model can reach an identification accuracy of 0.000 2 (?)/h for the Z-axis drift of RLG. Compared with the ra-dial basis function-neural network (RBF-NN) model, the GA-SVR model is more effective in identification of the Z-axis drift of RLG.展开更多
基金supported by the Foundation of Key Laboratory of Near-Surface。
文摘With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable.
基金the National Defense Science and Technology Key Laboratory Fund of China(XM2020XT1023).
文摘As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.
基金Supported by National Natural Science Foundation Of China (60873235, 60473099), Science-Technology Development Key Project of Jilin Province of China (20080318), and Program of New Century Excellent Talents in University of China (NCET-06-0300)
文摘模型辅助检测概率(model-assisted probability of detection,MAPoD)和灵敏度分析对于量化涡流无损检测(eddy current nondestructive testing,ECNDT)系统的检测能力非常重要。由于不确定性在涡流无损检测的MAPoD和SA问题中的传播,传统基于实验方法和物理仿真模型对该问题的分析需要耗费大量的时间和人力成本,为了降低这些成本,提出基于粒子群算法(particle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)模型取代传统的实验方法以及物理仿真模型,对涡流无损检测模型的响应进行预测,从而加速MAPoD和SA问题的分析。此外,创新性地将网格搜索、随机搜索、模拟退火算法和PSO等优化算法与SVR相结合,研究不同的优化算法对SVR的关键参数优化的精度和效率,验证PSO相较于其他优化算法的性能优势。最后,将PSO-SVR模型应用于ECNDT算例中,对表面裂缝长度的不确定性进行MAPoD和SA的分析。结果表明,所提算法在保证求解精度的同时,加速了涡流无损检测系统的MAPoD和SA问题的研究,并减少了计算开销。在计算量方面,对这两个问题的求解,平均分别仅需纯物理模型计算量的3.5%和0.06%。
文摘当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。
文摘Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.
文摘为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。
文摘This paper describes a novel approach for identifying the Z-axis drift of the ring laser gyroscope (RLG) based on ge-netic algorithm (GA) and support vector regression (SVR) in the single-axis rotation inertial navigation system (SRINS). GA is used for selecting the optimal parameters of SVR. The latitude error and the temperature variation during the identification stage are adopted as inputs of GA-SVR. The navigation results show that the proposed GA-SVR model can reach an identification accuracy of 0.000 2 (?)/h for the Z-axis drift of RLG. Compared with the ra-dial basis function-neural network (RBF-NN) model, the GA-SVR model is more effective in identification of the Z-axis drift of RLG.