期刊文献+
共找到854篇文章
< 1 2 43 >
每页显示 20 50 100
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
1
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine (SVM) Lyapunov exponent data mining embedding dimension feature classification
在线阅读 下载PDF
Forecasting model of residential load based on general regression neural network and PSO-Bayes least squares support vector machine 被引量:5
2
作者 何永秀 何海英 +1 位作者 王跃锦 罗涛 《Journal of Central South University》 SCIE EI CAS 2011年第4期1184-1192,共9页
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input... Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained. 展开更多
关键词 residential load load forecasting general regression neural network (GRNN) evidence theory PSO-Bayes least squaressupport vector machine
在线阅读 下载PDF
Least Squares-support Vector Machine Load Forecasting Approach Optimized by Bacterial Colony Chemotaxis Method 被引量:2
3
作者 ZENG Ming LU Chunquan +1 位作者 TIAN Kuo XUE Song 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期I0009-I0009,共1页
During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid c... During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed. 展开更多
关键词 short-term load forecasting hyper-parameters selection bacterial colony chemotaxis(BCC) least squares support vector machine(LS-SVM)
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
4
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
Knowledge mining collaborative DESVM correction method in short-term load forecasting 被引量:3
5
作者 牛东晓 王建军 刘金朋 《Journal of Central South University》 SCIE EI CAS 2011年第4期1211-1216,共6页
Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used t... Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used to consider the load time series trend forecasting,intelligence forecasting DESVR model was applied to estimate the non-linear influence,and knowledge mining methods were applied to correct the errors caused by irregular events.In order to prove the effectiveness of the proposed model,an application of the daily maximum load forecasting was evaluated.The experimental results show that the DESVR model improves the mean absolute percentage error(MAPE) from 2.82% to 2.55%,and the knowledge rules can improve the MAPE from 2.55% to 2.30%.Compared with the single ARMA forecasting method and ARMA combined SVR forecasting method,it can be proved that TIK method gains the best performance in short-term load forecasting. 展开更多
关键词 load forecasting support vector regression knowledge mining ARMA differential evolution
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
6
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Endpoint forecasting on composite regeneration by coupling cerium-based additive and microwave for diesel particulate filter 被引量:6
7
作者 鄂加强 左青松 +2 位作者 刘海力 李煜 龚金科 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2118-2128,共11页
Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect o... Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive. 展开更多
关键词 fuzzy least squares support vector machines diesel particulate filter composite regeneration endpoint forecasting
在线阅读 下载PDF
RS-SVM forecasting model and power supply-demand forecast 被引量:4
8
作者 杨淑霞 曹原 +1 位作者 刘达 黄陈锋 《Journal of Central South University》 SCIE EI CAS 2011年第6期2074-2079,共6页
A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there a... A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there are strong complementarities between two models. Firstly, the rough set was used to reduce the condition attributes, then to eliminate the attributes that were redundant for the forecast, Secondly, it adopted the minimum condition attributes obtained by reduction and the corresponding original data to re-form a new training sample, which only kept the important attributes affecting the forecast accuracy. Finally, it studied and trained the SVM with the training samples after reduction, inputted the test samples re-formed by the minimum condition attributes and the corresponding original data, and then got the mapping relationship model between condition attributes and forecast variables after testing it. This model was used to forecast the power supply and demand. The results show that the average absolute error rate of power consumption of the whole society and yearly maximum load are 14.21% and 13.23%, respectively, which indicates that the RS-SVM forecast model has a higher degree of accuracy. 展开更多
关键词 rough set (RS) support vector machine (SVM) power supply and demand forecast
在线阅读 下载PDF
Forecasting of wind velocity:An improved SVM algorithm combined with simulated annealing 被引量:2
9
作者 刘金朋 牛东晓 +1 位作者 张宏运 王官庆 《Journal of Central South University》 SCIE EI CAS 2013年第2期451-456,共6页
Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to th... Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to the analysis with support vector machine method, the drawback of determining the parameters only by experts' experience should be improved. After a detailed description of the methodology of SVM and simulated annealing, an improved algorithm was proposed for the automatic optimization of parameters using SVM method. An example has proved that the proposed method can efficiently select the parameters of the SVM method. And by optimizing the parameters, the forecasting accuracy of the max wind velocity increases by 34.45%, which indicates that the new SASVM model improves the forecasting accuracy. 展开更多
关键词 wind velocity forecasting improved algorithm simulated annealing support vector machine
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
10
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy C-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Study and application of time series forecasting based on rough set and Kernel method
11
作者 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期336-340,共5页
A support vector machine time series forecasting model based on rough set data preprocessing was proposed by combining rough set attribute reduction and support vector machine regression algorithm. First, remove the r... A support vector machine time series forecasting model based on rough set data preprocessing was proposed by combining rough set attribute reduction and support vector machine regression algorithm. First, remove the redundant attribute for forecasting from condition attribute by rough set method; then use the minimum condition attribute set obtained after the reduction and the corresponding initial data, reform a new training sample set which only retain the important attributes influencing the forecasting accuracy; study and train the support vector machine with the training sample obtained after reduction, and then input the reformed testing sample set according to the minimum condition attribute and corresponding initial data. The model was tested and the mapping relation was got between the condition attribute and forecasting variable. Eventually, power supply and demand were forecasted in this model. The average absolute error rates of power consumption of the whole society and yearly maximum load are respectively 14.21% and 13.23%. It shows that RS-SVM time series forecasting model has high forecasting accuracy. 展开更多
关键词 KERNEL method support vector machinE ROUGH SET forecasting
在线阅读 下载PDF
一种基于数据驱动的空调负荷预测方法 被引量:1
12
作者 周孟然 周光耀 +6 位作者 胡锋 朱梓伟 张奇奇 王玲 孔伟乐 吴长臻 崔恩汉 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期128-134,共7页
空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)... 空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)方法进行特征选择,剔除重要度小的特征.然后使用白鲨优化算法(white shark optimizer,WSO)对支持向量回归(support vector regression,SVR)的正则化参数和核函数的宽度参数进行优化,最后,结合自适应提升算法(adaptive boosting,Adaboost)构建Adaboost-WSO-SVR主模型,检验其精度并与其他方法进行比较.结果表明,提出的Adaboost-WSO-SVR主模型相比于集成优化后的BP,ELM模型精度更高.可知提出的方法在负荷预测方面效果更好,为空调节能优化控制策略提供依据. 展开更多
关键词 空调负荷 负荷预测 特征选择 白鲨优化算法 自适应提升算法 支持向量回归
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
13
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量机及其变体 超参数优化
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
14
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
高温天气板式轨道宽窄接缝变形规律试验研究
15
作者 蔡理平 陈松 张斌 《振动.测试与诊断》 北大核心 2025年第4期722-728,844,共8页
针对我国高速铁路CRTSⅡ型板式无砟轨道接缝病害情况开展现场测试,基于实测数据研究了温度荷载作用下轨道板宽窄接缝处变形与破坏规律。首先,通过搭建轨道板温度场和宽窄接缝变形监测系统,实现了对轨道板不同位置温度变化以及接缝处变... 针对我国高速铁路CRTSⅡ型板式无砟轨道接缝病害情况开展现场测试,基于实测数据研究了温度荷载作用下轨道板宽窄接缝处变形与破坏规律。首先,通过搭建轨道板温度场和宽窄接缝变形监测系统,实现了对轨道板不同位置温度变化以及接缝处变形情况的实时获取;其次,基于特征参量选取支持向量机算法,建立宽窄接缝变形预测模型,通过5折交叉验证和网格搜索法对惩罚系数和核参数进行优化;最后,对高温天气作用下轨道板与宽窄接缝处日相对位移进行预测。试验结果表明:夏季高温天气条件下,宽窄接缝变形与层间温度变化量、竖向温度梯度和纵向温差存在较强的相关性;预测模型具有较强的泛化能力,宽窄接缝变形值预测相对误差分别降低至9.565%和4.524%;通过实测数据验证了模型的有效性,预测精度分别达到93.641%和97.669%,可为避免宽窄接缝病害加剧及其他附加病害的产生提供预警,满足工程实践的需要。 展开更多
关键词 板式轨道 接缝病害 温度荷载 相对位移 支持向量机
在线阅读 下载PDF
基于VMD和PSO-SVM的非侵入式负荷识别方法
16
作者 杨锐 邹晓松 +3 位作者 熊炜 袁旭峰 郑华俊 刘斌 《电测与仪表》 北大核心 2025年第5期111-119,共9页
非侵入式负荷监测是智能用电的未来发展趋势,其中负荷的分解与辨识是实现该技术的重要环节。鉴于变分模态分解(variational mode decomposition,VMD)在信号处理方面的优势,提出一种基于VMD-FastICA(variational mode decomposition and ... 非侵入式负荷监测是智能用电的未来发展趋势,其中负荷的分解与辨识是实现该技术的重要环节。鉴于变分模态分解(variational mode decomposition,VMD)在信号处理方面的优势,提出一种基于VMD-FastICA(variational mode decomposition and fast independent component analysis)和VMD-Entropy-PSOSVM(variational mode decamposition-entropy-particle swanm optimization fo optimizing support vector machines)的负荷识别算法。该方法利用VMD对总负荷功率信号进行分解得到多个模态分量(intrinsic mode functions,IMF),再依据峭度准则和奇异值分解对分解后的模态分量重构,将单通道盲源分离虚拟成多通道盲源分离,输入快速独立分量分析(fast independent component analysis,FastICA)进行负荷信号分离,求取分解负荷波形模态分量的能量与能量熵。构建多维特征矩阵输入建立粒子群算法优化支持向量机(particle swarm optimization for optimizing support vector machines,PSO-SVM),进行负荷的分类辨识。采用开源数据集(reduced electricity dataset,REDD)对实验算法进行仿真,与其他算法相比,验证算法在分解和识别上都具有较好的效果。 展开更多
关键词 非侵入式负荷监测 单通道盲源分解 变分模态分解 能量熵 粒子群算法优化支持向量机
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:2
17
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小二乘支持向量机 相关性模型
在线阅读 下载PDF
改进变分模态分解和LSSVM的用户电力负荷预测
18
作者 解世璇 刘立群 吴青峰 《现代电子技术》 北大核心 2025年第20期127-134,共8页
为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分... 为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分解子序列,减少不同趋势信息对预测精度的影响,并利用优化后的VMD对数据进行分解;然后,使用麻雀搜索算法(SSA)改进最小二乘支持向量机(LSSVM)的模型学习参数,对惩罚系数和核函数进行参数寻优,避免了单一预测变量精度不高的问题,进而建立预测模型,获得更为精确的预测结果;最后,将分解后的各组数据分别输入模型中,并将每个子序列的预测结果相加得到最终预测结果。实验结果表明,与PSO、GWO和SABO算法的建模结果相比,所提模型具有更高的预测精度且耗时较短,在一定程度上可为负荷管理、电力优化调度提供科学决策依据。 展开更多
关键词 预测模型分析 鲸鱼优化算法 麻雀搜索算法 变分模态分解 最小二乘支持向量机 数据预处理 时间序列预测
在线阅读 下载PDF
基于SVM-SARIMA-LSTM模型的城市用水量实时预测
19
作者 李轩 吴永强 +2 位作者 王佳伟 杨伟超 张天洋 《水电能源科学》 北大核心 2025年第3期36-39,6,共5页
为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋... 为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋势部分与气温、降水、风速、气压和相对湿度5个气象因素之间的关系,利用长短时记忆网络(LSTM)对波动性明显的残差部分进行关系捕捉,构建了SVM-SARIMA-LSTM用水量实时预测模型,并利用衡水市3个月时用水量数据和气象数据训练SVM-SARIMA-LSTM模型,以随后1周的实测数据作为验证集对模型预测性能进行评估。结果表明,SVM-SARIMA-LSTM模型的平均绝对百分比误差(E_(MAP))比SARIMA模型低4.502%,均方根误差(E_(RMSE))降低了39.084%,确定系数R^(2)提高了9.965%,最大绝对误差(E_(maxA))减小了55.946%,具有较好的应用价值。所建模型通过整合关键气象因素,准确地捕捉到城市用水量的季节性趋势及非季节性波动,展现了优良的泛化性。 展开更多
关键词 SARIMA模型 支持向量机 长短时记忆神经网络 SVM-SARIMA-LSTM模型 STL分解程序 气象因素 用水量预测
在线阅读 下载PDF
基于支持向量机的发射场80 m高度风速预报订正模型
20
作者 张芳 王刚 +2 位作者 张朝飞 潘泉 陈锋 《载人航天》 北大核心 2025年第1期11-17,共7页
为提高发射场80 m高度风速预报准确率,利用发射场站点实况数据和业务使用的欧洲中期天气预报中心预报数据,基于支持向量机算法,建立了发射场80 m高度浅层风预报订正模型,并评估了其风速预报订正能力。试验表明:基于预报时次和风速等级... 为提高发射场80 m高度风速预报准确率,利用发射场站点实况数据和业务使用的欧洲中期天气预报中心预报数据,基于支持向量机算法,建立了发射场80 m高度浅层风预报订正模型,并评估了其风速预报订正能力。试验表明:基于预报时次和风速等级归类的浅层风预报订正模型中,每个子模型对风速的订正能力各不相同,4个风速区间≤6,(6,8],(8,10],>10 m/s的模型订正使得平均均方根误差分别减小了15.61%,30.24%,26.13%,32.93%;模型订正使得4个风速区间风速预报准确率分别平均提高了8.43%,28.53%,21.83%,24.98%;分析多次载人航天任务垂直转运节点的风速预报订正情况,可以看到模型在(6,8]m/s风速段订正效果较好。 展开更多
关键词 支持向量机 浅层风 风速预报 航天气象保障
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部