A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise ...A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well.展开更多
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is...Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.展开更多
Support Vector Machine(SVM) was demonstrated as a potentially useful tool to integrate multi-variables and to produce a predictive map for mineral deposits. The e 1071,a free R package,was used to construct a SVM with...Support Vector Machine(SVM) was demonstrated as a potentially useful tool to integrate multi-variables and to produce a predictive map for mineral deposits. The e 1071,a free R package,was used to construct a SVM with radial kernel function to integrate four evidence layers and to map prospectivity for Gangdese porphyry copper deposits.The results demonstrate that the predicted prospective target area for Cu occupies 20.5%of the total study area and contains 52.4%of the total number of known porphyry copper deposits.The results obtained展开更多
基金supported by Shanghai Science and Technology Commission Innovation Action Plan(08DZ1205708)
文摘A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well.
基金supported by the National Natural Science Fundation of China (60736021)the Joint Funds of NSFC-Guangdong Province(U0735003)
文摘Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.
文摘Support Vector Machine(SVM) was demonstrated as a potentially useful tool to integrate multi-variables and to produce a predictive map for mineral deposits. The e 1071,a free R package,was used to construct a SVM with radial kernel function to integrate four evidence layers and to map prospectivity for Gangdese porphyry copper deposits.The results demonstrate that the predicted prospective target area for Cu occupies 20.5%of the total study area and contains 52.4%of the total number of known porphyry copper deposits.The results obtained