期刊文献+
共找到492篇文章
< 1 2 25 >
每页显示 20 50 100
基于ERF和BO-SVC的交流接触器触头故障识别方法 被引量:1
1
作者 刘树鑫 祁新智 吕先锋 《电力工程技术》 北大核心 2024年第6期173-182,共10页
针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-S... 针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-SVC)的复合识别方法。首先,通过交流接触器全寿命试验平台提取接触器状态特征,并针对各状态样本间不均衡导致识别精度低现象,提出一种基于权重法的样本均衡处理策略。然后,使用ERF对均衡后样本进行特征选择和降维,提取最能表征触头状态变化规律的最优特征。最后,将最优特征输入到BO-SVC识别模型,与另外2种代表性模型作为对比,以精确率、召回率和F1-分数3个指标对各模型性能进行评估。在3个指标上,文中方法的结果分别达到95.22%、98.91%和97.01%,均高于对比模型。以F1-分数为指标,在4组样本上对各模型性能进行测试,结果表明文中方法的F1-分数平均高出对比模型0.56%和27.28%,验证文中研究有效解决了交流接触器特征冗余和故障识别精度低的问题。 展开更多
关键词 交流接触器 故障识别 样本不均衡 特征选择 嵌入式随机森林(ERF) 贝叶斯优化非线性支持向量机(BO-svc)
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
2
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
Dual membership SVM method based on spectral clustering
3
作者 Xiaodong Song Liyan Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期225-232,共8页
A new fuzzy support vector machine algorithm with dual membership values based on spectral clustering method is pro- posed to overcome the shortcoming of the normal support vector machine algorithm, which divides the ... A new fuzzy support vector machine algorithm with dual membership values based on spectral clustering method is pro- posed to overcome the shortcoming of the normal support vector machine algorithm, which divides the training datasets into two absolutely exclusive classes in the binary classification, ignoring the possibility of "overlapping" region between the two training classes. The proposed method handles sample "overlap" effi- ciently with spectral clustering, overcoming the disadvantages of over-fitting well, and improving the data mining efficiency greatly. Simulation provides clear evidences to the new method. 展开更多
关键词 dual membership model fuzzy support vector ma- chine (FSVM) spectral clustering sample "overlap".
在线阅读 下载PDF
基于SVC的电动汽车集群并网鲁棒优化调度模型 被引量:3
4
作者 李宏胜 李鵾 +3 位作者 汪洋 高菲 张瑜 谢宏福 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期386-393,共8页
针对电动汽车(electric vehicle,EV)入网时长和荷电状态(state of charge,SOC)的不确定性,提出基于支持向量聚类(support vector clustering,SVC)的电动汽车集群并网鲁棒优化调度模型。以EV的充放电功率作为决策变量,用户最小充电成本... 针对电动汽车(electric vehicle,EV)入网时长和荷电状态(state of charge,SOC)的不确定性,提出基于支持向量聚类(support vector clustering,SVC)的电动汽车集群并网鲁棒优化调度模型。以EV的充放电功率作为决策变量,用户最小充电成本为目标函数,建立集群EV调度模型。利用EV历史充电数据,以包含所有样本数据的最小超球体作为不确定集形状,将广义直方图交叉核作为核函数,计算EV入网时间和充电时长参数的不确定集,建立基于SVC的集群EV鲁棒优化调度模型。算例分析结果表明,所提方法能更准确地描述EV充电的不确定性参数,所提模型在保证经济性的同时能迅速响应分时电价,具有较好的实用性。 展开更多
关键词 电动汽车 不确定集 入网时长 荷电状态 支持向量聚类 鲁棒优化
在线阅读 下载PDF
基于GAN-SVC的水下障碍物轮廓构建研究
5
作者 唐会林 宋甘琳 +1 位作者 周佳加 武杨 《传感器与微系统》 CSCD 北大核心 2024年第12期12-15,共4页
针对由于复杂噪声使得水下无人航行器(UUV)声呐探测数据可靠性下降进而导致障碍物轮廓构建失准的问题,本文提出了一种基于生成对抗网络(GAN)和支持向量聚类(SVC)的水下障碍物轮廓构建算法。为区分复杂噪声点与障碍物点,该算法基于SVC对... 针对由于复杂噪声使得水下无人航行器(UUV)声呐探测数据可靠性下降进而导致障碍物轮廓构建失准的问题,本文提出了一种基于生成对抗网络(GAN)和支持向量聚类(SVC)的水下障碍物轮廓构建算法。为区分复杂噪声点与障碍物点,该算法基于SVC对声呐数据异常点进行初步筛选。针对SVC受参数影响可能导致较小簇误判的问题,利用GAN精确筛选异常点;并对精确的障碍物点进行聚类得到各个障碍物的最优轮廓。通过对湖中障碍物探测数据的轮廓构建仿真验证试验,相比SVC算法,使用本文所提GAN-SVC算法在对2个障碍物进行轮廓构建时,准确度分别提高了79.80%和48.13%。 展开更多
关键词 生成对抗网络 支持向量聚类 异常点检测 轮廓构建
在线阅读 下载PDF
基于DWD-SVR模型的锂离子电池剩余使用寿命预测
6
作者 王小明 何叶 +3 位作者 王路路 吴红斌 徐斌 赵文广 《太阳能学报》 北大核心 2025年第2期52-59,共8页
针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K... 针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K-均值聚类方法将各尺度信号中样本熵与排列熵相近的子序列进行聚类,根据聚类结果将复杂度与随机性相近的子序列进行重构,以减少建模次数,提高预测效率;最后,通过SVR预测模型精确捕捉不同尺度下容量信号的变化情况,实现电池RUL准确预测。实验结果表明,提出的基于DWD-SVR模型的锂离子电池RUL预测方法能在保证全局退化趋势预测准确性的同时对波动进行及时地响应,可提高预测性能。 展开更多
关键词 锂离子电池 支持向量回归 K-均值聚类 剩余使用寿命 离散小波分解
在线阅读 下载PDF
基于K-均值的SVC的雷达辐射源信号识别 被引量:4
7
作者 李序 张葛祥 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第23期6333-6337,共5页
无监督学习是解决未知雷达辐射源信号识别的有效方法。Support Vector Clustering(SVC)是一种基于支持向量机的无监督聚类方法。SVC不仅时间复杂度高,而且在处理分布复杂、不均匀样本时,识别率较低。结合K-均值与SVC的优点,提出一种基... 无监督学习是解决未知雷达辐射源信号识别的有效方法。Support Vector Clustering(SVC)是一种基于支持向量机的无监督聚类方法。SVC不仅时间复杂度高,而且在处理分布复杂、不均匀样本时,识别率较低。结合K-均值与SVC的优点,提出一种基于K-均值的SVC无监督聚类方法。此方法用K-均值聚类法对数据样本作初步的线性划分,将原数据样本划分成若干子样本。再将这些子样本分别映射到高维特征空间,用SVC方法去处理非线性问题。由K-均值聚类法将二次规划问题分解,大大减少SVC的计算量,降低时间消耗。相对于原数据样本,子样本的分布较为简单、均匀,容易找到更为合适的SVC参数值。对雷达辐射源信号进行聚类分析的实验结果表明,此方法处理速度较快,识别率较高。 展开更多
关键词 K-均值聚类 support vector clustering(svc)无监督聚类 雷达辐射源
在线阅读 下载PDF
基于KPCA-SVC的复杂过程故障诊断 被引量:16
8
作者 刘爱伦 袁小艳 俞金寿 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第5期870-874,共5页
本文提出了一种将核主元分析方法与支持向量机分类相结合进行故障诊断的方法,运用该方法对连续搅拌釜式反应器(CSTR)进行实时的故障诊断,实验结果表明KPCA-SVC故障诊断方法既充分利用了KPCA的特征提取能力和SVC的良好的分类能力,又避免... 本文提出了一种将核主元分析方法与支持向量机分类相结合进行故障诊断的方法,运用该方法对连续搅拌釜式反应器(CSTR)进行实时的故障诊断,实验结果表明KPCA-SVC故障诊断方法既充分利用了KPCA的特征提取能力和SVC的良好的分类能力,又避免了复杂的计算,有利于提高故障诊断模型的实时性。 展开更多
关键词 核主元分析(KPcA) 支持向量机分类(svc) 故障诊断
在线阅读 下载PDF
ν-SVC分类算法在飞机作战效能评估中的应用 被引量:3
9
作者 郭风 王思源 伦洪昌 《电光与控制》 北大核心 2007年第2期38-40,54,共4页
ν-SVC算法是一种新的支持向量机分类算法,该算法根据给定的参数ν自动调整ε,来控制支持向量数目和算法误差。本文应用ν-SVC算法建立了飞机作战效能分类评估模型,并对几种飞机的作战效能进行了分类评估。评估结果与实际相符,表明ν-SV... ν-SVC算法是一种新的支持向量机分类算法,该算法根据给定的参数ν自动调整ε,来控制支持向量数目和算法误差。本文应用ν-SVC算法建立了飞机作战效能分类评估模型,并对几种飞机的作战效能进行了分类评估。评估结果与实际相符,表明ν-SVC算法的飞机作战效能分类评估有较高的分类精度。 展开更多
关键词 v—svc 支持向量机 作战效能 评估
在线阅读 下载PDF
基于加权K-近邻法和SVC的雷达辐射源信号识别 被引量:5
10
作者 李序 张葛祥 荣海娜 《系统工程与电子技术》 EI CSCD 北大核心 2010年第6期1215-1219,共5页
为提高支持向量聚类法对分布复杂、不均匀雷达辐射源信号样本聚类的正确率,提出一种结合剪辑近邻法、K-近邻法和支持向量聚类的无监督分类新方法。先采用支持向量聚类对所有未知样本作预分类,再按照一定的剪辑规则剪掉错误类别,最后利... 为提高支持向量聚类法对分布复杂、不均匀雷达辐射源信号样本聚类的正确率,提出一种结合剪辑近邻法、K-近邻法和支持向量聚类的无监督分类新方法。先采用支持向量聚类对所有未知样本作预分类,再按照一定的剪辑规则剪掉错误类别,最后利用K-近邻法对剪掉的样本按各已知类别不同分布进行加权分类。IRIS数据和辐射源信号聚类实验结果表明,此方法能平衡数据样本各局部分布,获得全局最优聚类分配。 展开更多
关键词 信号处理 雷达辐射源信号识别 支持向量聚类 K-近邻法
在线阅读 下载PDF
基于SVC和wavelet-transform的图像脉冲噪声自适应新滤波器 被引量:2
11
作者 陆丽婷 朱嘉钢 《计算机应用》 CSCD 北大核心 2009年第2期477-479,共3页
利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先... 利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先的SVC滤波器有明显的改善。 展开更多
关键词 图像恢复 脉冲噪声 小波变换 支持向量分类
在线阅读 下载PDF
信息熵融合的PSO-SVC涡旋压缩机故障诊断 被引量:6
12
作者 刘涛 梁成玉 《振动.测试与诊断》 EI CSCD 北大核心 2022年第1期141-147,200,共8页
针对涡旋压缩机振动信号的不稳定性及难以获取大量故障样本的问题,提出了一种信息熵融合与粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector classification,简称SVC)涡旋压缩机故障诊断方法。通过奇异... 针对涡旋压缩机振动信号的不稳定性及难以获取大量故障样本的问题,提出了一种信息熵融合与粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector classification,简称SVC)涡旋压缩机故障诊断方法。通过奇异谱熵和功率谱熵分析,分别提取振动信号时域与频域特征,采用变分模态分解(variational modede composition,简称VMD)能量熵衡量故障振动信号时⁃频域特征,利用因子分析融合奇异谱熵、功率谱熵和能量熵值得到单一评价指标特征向量。将评价指标作为PSO⁃SVC模型的输入,通过训练建立PSO⁃SVC涡旋压缩机故障分类模型。实验结果表明,该方法在小样本情况下,仍能有效地对涡旋压缩机4种典型故障类型进行分类,准确率达到94.5%。 展开更多
关键词 信息熵融合 粒子群优化⁃支持向量回归 涡旋压缩机 故障诊断
在线阅读 下载PDF
基于数据驱动不确定集的微电网两阶段鲁棒优化调度
13
作者 魏斌 乔森 +1 位作者 孟润泉 李嘉庚 《高电压技术》 北大核心 2025年第2期852-863,I0028-I0030,共15页
鲁棒优化作为应对风电等新能源出力不确定性的重要工具,广泛应用于微电网优化调度中。传统的不确定集不够紧凑,无法准确刻画风电不确定性,同时不确定集包围的数据中可能存在部分异常值,导致调度结果过于保守。针对上述问题,提出了一种... 鲁棒优化作为应对风电等新能源出力不确定性的重要工具,广泛应用于微电网优化调度中。传统的不确定集不够紧凑,无法准确刻画风电不确定性,同时不确定集包围的数据中可能存在部分异常值,导致调度结果过于保守。针对上述问题,提出了一种基于数据驱动不确定集的微电网两阶段鲁棒优化调度方法。首先,通过风电历史数据构建条件正态Copula(conditional normal copula,CNC)模型,再将日前风电预测值输入CNC模型生成次日风电功率样本。然后,通过支持向量聚类(support vector clustering,SVC)和维度分解构建考虑风电时间相关性的数据驱动不确定集。该不确定集可更为准确地刻画风电不确定性,并将风电数据中的异常值排除在外,从而在降低鲁棒优化保守性的同时具备异常值抵抗性。其次,提出了基于上述不确定集的两阶段鲁棒优化调度模型,并采用列约束生成(column and constraint generation,C&CG)算法求解。最后通过仿真证明了相较传统不确定集,本文构建的不确定集保守性更低,同时对风电数据异常值具有良好的抵抗性。 展开更多
关键词 鲁棒优化 数据驱动 支持向量聚类 时间相关性 抵抗性
在线阅读 下载PDF
一种基于SVC的图像分割模型
14
作者 游培寒 钟文超 祝逢春 《计算机工程》 CAS CSCD 北大核心 2011年第S1期179-182,共4页
根据区域特征将晶相图像分成单晶体和共析体两部分,利用活动轮廓模型对单晶体区域进行伸展直到两部分边缘处停滞。通过SVC特征识别模型提供活动轮廓的边缘能量项。仿真结果表明,与RBF模型相比,在相同检测精度条件下,SVC模型耗费的资源... 根据区域特征将晶相图像分成单晶体和共析体两部分,利用活动轮廓模型对单晶体区域进行伸展直到两部分边缘处停滞。通过SVC特征识别模型提供活动轮廓的边缘能量项。仿真结果表明,与RBF模型相比,在相同检测精度条件下,SVC模型耗费的资源少、效率高。 展开更多
关键词 材料分析 活动轮廓 支持向量分类模型 径向基函数分类模型
在线阅读 下载PDF
一种直流配电网电能质量扰动识别方法
15
作者 李语帆 张怡 康健 《现代电子技术》 北大核心 2025年第10期118-126,共9页
随着接入电网电力电子器件的增加,直流配电网因在输电性能、降低线损、新能源消纳等方面优于传统配电网,逐渐成为未来配电发展的新趋势。为使直流配电网稳定运行,保证电能质量,提出一种基于核主成分分析(KPCA)特征降维的ISSA-SVM电能质... 随着接入电网电力电子器件的增加,直流配电网因在输电性能、降低线损、新能源消纳等方面优于传统配电网,逐渐成为未来配电发展的新趋势。为使直流配电网稳定运行,保证电能质量,提出一种基于核主成分分析(KPCA)特征降维的ISSA-SVM电能质量扰动识别方法。首先,深入探讨了各类电能质量问题的形成机理,并结合波形提取出6种特征;其次,利用DBSCAN聚类方法检测是否存在异常值来确定是否使用KPCA将特征降维,使其能够在不同数据情况下都实现良好聚类;最后,利用改进麻雀搜索算法(ISSA)对支持向量机(SVM)进行参数寻优,并用寻优结果重新训练SVM模型。实验结果表明,所提方法有较高的准确度,可以有效识别出电能质量扰动信号。 展开更多
关键词 直流配电网 电能质量 扰动识别 DBSCAN聚类 功率谱密度 核主成分分析 麻雀搜索算法 支持向量机
在线阅读 下载PDF
信用风险评估中DKIPSO-SVC组合模型的仿真研究 被引量:2
16
作者 万振海 刘铁英 +1 位作者 张扬 李吉双 《系统仿真学报》 CAS CSCD 北大核心 2015年第8期1875-1880 1887,共7页
借助于支持向量分类机(SVC)的强泛化能力与鲁棒性,针对GDS-SVC、DIPSO-SVC选取参数的低效性,在改进的粒子群算法(DIPSO)位置更新过程中引入缩减因子(DKIPSO),建立基于DKIPSO自动选取SVC参数的DKIPSO-SVC组合模型,并将其应用于商业银行... 借助于支持向量分类机(SVC)的强泛化能力与鲁棒性,针对GDS-SVC、DIPSO-SVC选取参数的低效性,在改进的粒子群算法(DIPSO)位置更新过程中引入缩减因子(DKIPSO),建立基于DKIPSO自动选取SVC参数的DKIPSO-SVC组合模型,并将其应用于商业银行的信用评估。仿真结果表明,DKIPSO-SVC模型的鲁棒性优于DIPSO-SVC;DKIPSO-SVC分类精度为96.6049%,高于DIPSO-SVC93.8272%和GDS-SVC92.5926%。DKIPSO-SVC模型把第2类误判率从8.5526%降低到1.9737%,降低幅度近76.9228%,这将在极大程度上规避了商业银行的信用风险。 展开更多
关键词 信用评估 支持向量机 粒子群算法 DKIPSO-svc模型
在线阅读 下载PDF
改进加权SVC的雷达信号分选新方法 被引量:5
17
作者 袁泽恒 田润澜 张旭洲 《现代防御技术》 2018年第3期86-92,共7页
目前基于多参数的雷达信号聚类分选方法得到了广泛应用,但是当雷达信号严重交叠时,存在正确率不高的问题,为此,在支持向量聚类和分层互耦的分选算法基础上,首先利用变精度粗糙集对标准化的雷达信号数据进行加权处理,然后通过分析聚类分... 目前基于多参数的雷达信号聚类分选方法得到了广泛应用,但是当雷达信号严重交叠时,存在正确率不高的问题,为此,在支持向量聚类和分层互耦的分选算法基础上,首先利用变精度粗糙集对标准化的雷达信号数据进行加权处理,然后通过分析聚类分选结果构建有效性评价模型,确定最佳的聚类分选参数。仿真表明,当雷达信号数据严重交叠时,相比原始方法,改进的方法正确率显著提高,证明了方法的有效性。 展开更多
关键词 雷达信号分选 支持向量聚类 变精度粗糙集 加权处理 有效性评价模型 聚类分选参数
在线阅读 下载PDF
从SVC核到SVR核的非正定问题的研究
18
作者 童设坤 朱嘉钢 吴锡生 《计算机应用与软件》 CSCD 2010年第1期193-195,共3页
从支持向量回归机的几何框架出发,用理论推导和仿真的方法,提出了两种从SVC到SVR的核函数转换中引起的核函数非正定性问题的解决方法。一是通过引入空间映射变换保证所得到的SVR的核函数是正定的;二是利用近似SVR模型解决具有非正定核的... 从支持向量回归机的几何框架出发,用理论推导和仿真的方法,提出了两种从SVC到SVR的核函数转换中引起的核函数非正定性问题的解决方法。一是通过引入空间映射变换保证所得到的SVR的核函数是正定的;二是利用近似SVR模型解决具有非正定核的SVR模型的不可解问题。仿真结果表明,该两种方法能够基本解决上述问题。 展开更多
关键词 支持向量分类机 支持向量回归机 非正定核函数 梯度下降法 SVR svc
在线阅读 下载PDF
基于SVC算法的SVM工作集优选法
19
作者 吕梁 赵光宙 徐磊 《江南大学学报(自然科学版)》 CAS 2008年第3期327-330,共4页
工作集的规模很大时,支持向量机的学习过程需要占用大量的内存,寻优速度很慢.文中提出一种基于支持向量聚类的工作集优选方法,分别最优化每一类样本集获取支持向量,利用支持向量几何分布特性,筛选后构造工作集.针对样本集不平衡情况,根... 工作集的规模很大时,支持向量机的学习过程需要占用大量的内存,寻优速度很慢.文中提出一种基于支持向量聚类的工作集优选方法,分别最优化每一类样本集获取支持向量,利用支持向量几何分布特性,筛选后构造工作集.针对样本集不平衡情况,根据每一类支持向量个数对惩罚系数加权的加权优选法解决最优分离超平面偏移问题.该算法所选工作集具有代表性,能大幅度降低学习代价,同时具有较高的分类效率. 展开更多
关键词 支持向量机 工作集 支持向量聚类 惩罚系数
在线阅读 下载PDF
结构系统可靠度分析的SVC抽样迁移算法
20
作者 白冰 李乔 张清华 《西南交通大学学报》 EI CSCD 北大核心 2014年第6期987-994,共8页
为有效避免结构系统可靠度计算过程中复杂的约界分析处理,针对系统可靠度问题多失效模式的固有特点,引入了系统极限状态曲面的概念,并利用支持向量分类算法(support vector classification,SVC)对该失效曲面进行了直接重构.在此基础上,... 为有效避免结构系统可靠度计算过程中复杂的约界分析处理,针对系统可靠度问题多失效模式的固有特点,引入了系统极限状态曲面的概念,并利用支持向量分类算法(support vector classification,SVC)对该失效曲面进行了直接重构.在此基础上,结合LHS(Latin hypercube sampling)抽样迁移策略,提出了计算结构系统可靠度的SVC抽样迁移算法.通过对比分析两个典型算例表明:本文算法具有较高的抽样效率和收敛性能,与传统Monte Carlo法相比,其抽样工作量减少87%,计算结果相对误差不超过1%,且可有效避免现有β约界算法中需要人为假定失效状态的缺陷,更适用于实际结构可靠度问题的分析求解. 展开更多
关键词 系统可靠度 系统极限状态方程 支持向量分类机 迁移抽样 失效模式
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部