Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points...Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.展开更多
Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should ...Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.展开更多
To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity mu...To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity multiuser detection algorithm with recursively successive zero-forcing and successive interference cancellation(RSZF-SIC) based on nullspace is proposed. The RSZF process based on the block diagonalization(BD) technique eliminates the co-channel interference(CCI) by a recursive method based on the nullspace orthogonal theorem. The SIC process detects the user signals respectively with the reasonable user detection sequence based on the results of the RSZF process. The computational complexity of the proposed algorithm is effectively reduced by reducing the total number of singular value decomposition(SVD) operations and the dimension of the SVD matrix in the recursive procedure. The performance of the proposed algorithm is improved in terms of bit error rate and sum capacity of the system, especially in the highSNR regime.展开更多
Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, sev...Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, severe co-channel interference is an essential problem. Specifically, there are two significant interferences, i.e., inter-terminal interference(ITI) and inter-cell interference(ICI), which lead to an obvious performance degradation. In this paper, two techniques are proposed for suppressing the ITI and ICI in a CCFD cellular system, respectively. The first technique is obtained by modeling the three-node CCFD system as the Z-channel. After deriving the sum-capacity of the Z-channel, a sum-capacity-achieving scheme based on successive interference cancellation(SIC) is proposed. The second technique is designed by combining the fractional frequency reuse scheme with CCFD. The performance gains of the proposed two techniques in terms of signalto-interference plus noise ratio(SINR) and sumcapacity are analyzed. Simulation results show that the proposed scheme can achieve significant interference suppression performance and higher system capacity, especially for cell edge users.展开更多
为了解决移动通信系统中的高延迟和覆盖盲点问题,提出了一种基于认知无线电-非正交多址接入(Cognitive Radio Non-orthogonal Multiple Access,CR-NOMA)的工业物联网网络。在认知网络中次用户采用解码转发(Decode and Forward,DF)和放...为了解决移动通信系统中的高延迟和覆盖盲点问题,提出了一种基于认知无线电-非正交多址接入(Cognitive Radio Non-orthogonal Multiple Access,CR-NOMA)的工业物联网网络。在认知网络中次用户采用解码转发(Decode and Forward,DF)和放大转发(Amplify and Forward,AF)两种辅助解码方式下,推导了主用户和次用户在完全串行干扰或不完全串行干扰两种终端状态下的中断性能。当用户间链路条件相同时,认知中继采用AF方式优于DF方式,且不完全串行干扰技术后系统残留干扰噪声的增大也会导致主用户和次用户的中断概率增大。研究还发现,各用户移动导致用户之间距离增大时,主用户和次用户的中断概率也会增大。展开更多
基金supported by the National Natural Science Foundation of China(62101415)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110757).
文摘Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.
基金supported in part by the National Natural Science Foundation of China under Grant 62171235 and Grant 62171237in part by the Qinglan Project of Jiangsu Provincein part by the Open Research Foundation of National Mobile Communications Research Laboratory of Southeast University under Grant 2023D01.
文摘Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 201149)Postdoctoral Science-Research Foundation of Heilongjiang (Grant No. LBH-Q11108)the National Natural Science Foundation of China (61071104)
文摘To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity multiuser detection algorithm with recursively successive zero-forcing and successive interference cancellation(RSZF-SIC) based on nullspace is proposed. The RSZF process based on the block diagonalization(BD) technique eliminates the co-channel interference(CCI) by a recursive method based on the nullspace orthogonal theorem. The SIC process detects the user signals respectively with the reasonable user detection sequence based on the results of the RSZF process. The computational complexity of the proposed algorithm is effectively reduced by reducing the total number of singular value decomposition(SVD) operations and the dimension of the SVD matrix in the recursive procedure. The performance of the proposed algorithm is improved in terms of bit error rate and sum capacity of the system, especially in the highSNR regime.
基金jointly supported by the HongKong,Macao and Taiwan Science & Technology Cooperation Program of China(Grant no.2015DFT10170)the Beijing Higher Education Young Elite Teacher Project
文摘Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, severe co-channel interference is an essential problem. Specifically, there are two significant interferences, i.e., inter-terminal interference(ITI) and inter-cell interference(ICI), which lead to an obvious performance degradation. In this paper, two techniques are proposed for suppressing the ITI and ICI in a CCFD cellular system, respectively. The first technique is obtained by modeling the three-node CCFD system as the Z-channel. After deriving the sum-capacity of the Z-channel, a sum-capacity-achieving scheme based on successive interference cancellation(SIC) is proposed. The second technique is designed by combining the fractional frequency reuse scheme with CCFD. The performance gains of the proposed two techniques in terms of signalto-interference plus noise ratio(SINR) and sumcapacity are analyzed. Simulation results show that the proposed scheme can achieve significant interference suppression performance and higher system capacity, especially for cell edge users.
文摘为了解决移动通信系统中的高延迟和覆盖盲点问题,提出了一种基于认知无线电-非正交多址接入(Cognitive Radio Non-orthogonal Multiple Access,CR-NOMA)的工业物联网网络。在认知网络中次用户采用解码转发(Decode and Forward,DF)和放大转发(Amplify and Forward,AF)两种辅助解码方式下,推导了主用户和次用户在完全串行干扰或不完全串行干扰两种终端状态下的中断性能。当用户间链路条件相同时,认知中继采用AF方式优于DF方式,且不完全串行干扰技术后系统残留干扰噪声的增大也会导致主用户和次用户的中断概率增大。研究还发现,各用户移动导致用户之间距离增大时,主用户和次用户的中断概率也会增大。