Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) S...Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) SmSb_(2) through electrical transport and synchrotron x-ray diffraction measurements.At P_(C)~2.5 GPa,we found a pressure-induced magnetic phase transition accompanied by a Cmca→P4/nmm structural phase transition.In the pristine AFM phase below P_(C),the AFM transition temperature of SmSb_(2) is insensitive to pressure;in the emergent magnetic phase above P_(C),however,the magnetic critical temperature increases rapidly with increasing pressure.In addition,at ambient pressure,the magnetoresistivity(MR) of SmSb_(2) increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2 K.With increasing pressure above P_(C),the MR behavior remains similar to that observed at ambient pressure,both in terms of temperature-and field-dependent MR.This leads us to argue an AFM-like state for SmSb_(2) above P_(C).Within the investigated pressure of up to 45.3 GPa and the temperature of down to 1.8 K,we found no signature of superconductivity in SmSb_(2).展开更多
High-pressure studies of two-dimensional materials have revealed numerous novel properties and physical mechanisms behind them.As a typical material of transition metal dichalcogenides(TMDs),ZrSe_(2)exhibits high carr...High-pressure studies of two-dimensional materials have revealed numerous novel properties and physical mechanisms behind them.As a typical material of transition metal dichalcogenides(TMDs),ZrSe_(2)exhibits high carrier mobility,rich electronic states regulated by doping,and high potential in applications at ambient pressure.However,the properties of ZrSe_(2)under pressure are still not clear,especially for the structural and electrical properties.Here,we report the investigation of ZrSe_(2)under pressure up to 66.5 GPa by in-situ x-ray diffraction,Raman,electrical transport measurements,and first-principles calculations.Two structural phase transitions occur in ZrSe_(2)at 8.3 GPa and 31.5 GPa,from P-3m1 symmetry to P2_(1)/m symmetry,and finally transformed into a non-layer I4/mmm symmetry structure.Pressure-induced metallic transition is observed at around 19.4 GPa in phaseⅡwhich aligns well with the results of the calculation.Our work will help to improve the understanding of the evolution of the structure and electrical transport properties of two-dimensional materials.展开更多
The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy ...The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.展开更多
High-temperature superconductivity is often found in the vicinity of antiferromagnetism. This is also true in LaFeAsOl-xFx (x ≤ 0.2,) and many other iron-based superconductors, which leads to proposals that superco...High-temperature superconductivity is often found in the vicinity of antiferromagnetism. This is also true in LaFeAsOl-xFx (x ≤ 0.2,) and many other iron-based superconductors, which leads to proposals that supercon- ductivity is mediated by fluctuations associated with the nearby magnetism. Here we report the discovery of a new superconductivity dome without low-energy magnetic fluctuations in LaFeAsO1-xFx with 0.25 ≤ x ≤ 0.75, where the maximal critical temperature Tc at Xopt =0.5-0.55 is even higher than that at x ≤0.2. By nuclear magnetic resonance and transmission electron microscopy, we show that a C4 rotation symmetry-breaking struc- tural transition takes place for x 〉 0.5 above To. Our results point to a new paradigm of high temperature superconductivity.展开更多
Pentazolate compounds have attracted extensive attention as high energy density materials.The synthesis and recovery of pentazolate compounds is of great importance for their potential applications.Here,we report the ...Pentazolate compounds have attracted extensive attention as high energy density materials.The synthesis and recovery of pentazolate compounds is of great importance for their potential applications.Here,we report the synthesis of Pmn2_(1)-NaN_(5)and Pm-Na_(2)N_(5)through compressing and laser heating pure NaN_(3)at~60 GPa.Upon decompression,the pressureinduced structural transition from Pmn2_(1)-NaN_(5)into Cm-NaN_(5)is observed in the pressure range of 14-23 GPa for the first time.The cyclo-N_(5)^(-)can be traced down to 4.7 GPa at room temperature and recovered to ambient pressure under low temperature condition(up to 160 K).The Pm-Na_(2)N_(5)is suggested to decompose into the P4/mmm-NaN_(2)at 23 GPa,and be stable at ambient conditions.This work provides insight into the high-pressure behaviors of pentazolate compounds and an alternative way to stabilize energetic polynitrogen compounds.展开更多
The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity ex...The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity experiments. With an increase in the magnetic field H, the antiferromagnetic transition temperature TN is observed to shift progressively toward lower temperatures. The corresponding high temperature cubic (Fd3m) to low temperature tetragonal (I41amd) structural transition is tuned simultaneously due to the inherent strong spin-lattice coupling. In the antiferromagnetic phase, an anomaly at Hc2 defined as a steep downward peak in the derivative of the M-H curve is dearly drawn. It is found that TN versus H and Hc2 versus T exhibit a consistent tendency, indicative of a field-induced tetragonal (I41amd) to cubic (Fd3m) structural transition. The transition is further substantiated by the field-dependent dielectric constant and thermal conductivity measurements. We modify the T-H phase diagram, highlighting the coexistence of the paramagnetic state and ferromagnetic clusters between 100K and TN.展开更多
Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)str...Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)structure of Sn surface is obtained.Superconductivity is also detected on the fcc-Sn(111)surface,and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate.Furthermore,phase transition occurs from fcc-Sn(111)toβ-Sn(001)by keeping the sample at room temperature for a certain time.Due to the strain relaxation on theβ-Sn islands,both the in-plane unit cell and out-of-plane structures distort,and the height of surface atoms varies periodically to form a universal ripple structure.展开更多
Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of s...Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-Tc superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe2Pn2 (Pn = P, As, Sb) or FeeCh2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the Ko.sFe1.6+xSe2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed.展开更多
Understanding the physical mechanism of structural stability and transition in various polytypes of layered transition metal dichalcogenides under the external stimulus is of crucial importance for their new applicati...Understanding the physical mechanism of structural stability and transition in various polytypes of layered transition metal dichalcogenides under the external stimulus is of crucial importance for their new applications.Here,we investigate the thickness-dependent structural properties of MoS2 under the condition of hydrostatic pressure in terms of bond relaxation and thermodynamics considerations.For both types of MoS2 structures,we find that the transition and metallization are significantly modulated by hydrostatic pressure and the number of layers.We establish a pressure-size phase diagram to address the transition mechanism.Our study not only provides insights into the thickness-dependent structural properties of MoS2,but also shows a theoretical guidance for the design and fabrication of MoS2-based devices.展开更多
Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its c...Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ~ 12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ~50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy.展开更多
We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural tra...We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.展开更多
The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc b...The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.展开更多
The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in associatio...The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.展开更多
We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functio...We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functional approximation. By varying the concentration of Zn components from 0% to 100%, we find that the Zn_xCd(1-x)O alloy undergoes a phase transition from octahedron to tetrahedron at x = 0.32, in agreement with the recent experimental findings. The phase transition leads to a mutation of the electron mobility originated from the changes of the effective mass. Our results qualify Zn O/Cd O alloy as an attractive candidate for photo-electrochemical and solar cell power applications.展开更多
The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insul...The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.展开更多
Fullerene molecules are interesting materials because of their unique structures and properties in mechanical, electrical, magnetic, and optical aspects. Current research is focusing on the construction of well-define...Fullerene molecules are interesting materials because of their unique structures and properties in mechanical, electrical, magnetic, and optical aspects. Current research is focusing on the construction of well-defined fullerene nano/microcrystals that possess desirable structures and morphologies. Further tuning the intermolecular interaction of the fullerene nano/microcrystals by use of pressure is an efficient way to modify their structures and properties, such as creation of nanoscale polymer structures and new hybrid materials, which expands the potential of such nanoscale materials for di- rect device components. In this paper, we review our recent progress in the construction of fullerene nanostructures and their structural transformation induced by high pressure. Fullerene nano/microcrystals with controllable size, morphology and structure have been synthesized through the self-assembly of fullerene molecules by a solvent-assisted method. By virtue of high pressure, the structures, components, and intermolecular interactions of the assemblied fullerene nano/microcrystals can be finely tuned, thereby modifying the optical and electronic properties of the nanostructures. Several examples on high pressure induced novel structural phase transition in typical fullerene nanocrystals with C60 or C70 cage serving as build- ing blocks are presented, including high pressure induced amorphization of the nanocrystals and their bulk moduli, high pressure and high temperature (HPHT) induced polymerization in C60 nanocrystals, pressure tuned reversible polymeriza- tion in ferrocene-doped C60/C70 single crystal, as well as unique long-range ordered crystal with amorphous nanoclusters serving as building blocks in solvated C60 crystals, which brings new physical insight into the understanding of order and disorder concept and new approaches to the design of superhard carbon materials. The nanosize and morphology effects on the transformations of fullerene nanocrystals have also been discussed. These results provide the foundation for the fabrication of pre-designed and controllable geometries, which is critical in fullerenes and relevant materials for designing nanometer-scale electronic, optical, and other devices.展开更多
The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been su...The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been successfully fabricated via phase transition engineering.However,the understanding of structural phase transition ofβ-Sn(001)thin films is still elusive.Here,we report the direct growth of ultrathinβ-Sn(001)films epitaxially on the highly oriented pyrolytic graphite(HOPG)substrate and the characterization of intricate structural-transition-induced superstructures.The morphology was obtained by using atomic force microscopy(AFM)and low-temperature scanning tunneling microscopy(STM),indicating a structure-related bilayer-by-bilayer growth mode.The ultrathinβ-Sn film was made of multiple domains with various superstructures.Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains.The formation mechanism of these superstructures was further discussed based on the structural phase transition ofβtoα-Sn at the atomic-scale thickness.Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit,but also paves a way to investigate their structure-sensitive topological properties.展开更多
Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observe...Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ce islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the nacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage.展开更多
Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of port...Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of portable electronics,transportation,and future robotic technologies,supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged.Transition metal compounds(TMCs)possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors.However,the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process,which greatly impede their large-scale applications.Most recently,the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges.Herein,we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies,including conductive carbon skeleton,interface engineering,and electronic structure.Furthermore,the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors.展开更多
The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, a...The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406102 and 2022YFA1602603)the National Natural Science Foundation of China (Grant Nos. 12374049 and 12174395)+2 种基金the China Postdoctoral Science Foundation (Grant No. 2023M743542)Hefei Institutes of Physical Science,Chinese Academy of Sciences the Director’s Fundation of (Grant No. YZJJ2024QN41)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08)。
文摘Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb_(2),here we present a high-pressure study of an isostructural antiferromagnetic(AFM) SmSb_(2) through electrical transport and synchrotron x-ray diffraction measurements.At P_(C)~2.5 GPa,we found a pressure-induced magnetic phase transition accompanied by a Cmca→P4/nmm structural phase transition.In the pristine AFM phase below P_(C),the AFM transition temperature of SmSb_(2) is insensitive to pressure;in the emergent magnetic phase above P_(C),however,the magnetic critical temperature increases rapidly with increasing pressure.In addition,at ambient pressure,the magnetoresistivity(MR) of SmSb_(2) increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2 K.With increasing pressure above P_(C),the MR behavior remains similar to that observed at ambient pressure,both in terms of temperature-and field-dependent MR.This leads us to argue an AFM-like state for SmSb_(2) above P_(C).Within the investigated pressure of up to 45.3 GPa and the temperature of down to 1.8 K,we found no signature of superconductivity in SmSb_(2).
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1405500)the National Natural Science Foundation of China(Grant Nos.52372257 and 52072188)。
文摘High-pressure studies of two-dimensional materials have revealed numerous novel properties and physical mechanisms behind them.As a typical material of transition metal dichalcogenides(TMDs),ZrSe_(2)exhibits high carrier mobility,rich electronic states regulated by doping,and high potential in applications at ambient pressure.However,the properties of ZrSe_(2)under pressure are still not clear,especially for the structural and electrical properties.Here,we report the investigation of ZrSe_(2)under pressure up to 66.5 GPa by in-situ x-ray diffraction,Raman,electrical transport measurements,and first-principles calculations.Two structural phase transitions occur in ZrSe_(2)at 8.3 GPa and 31.5 GPa,from P-3m1 symmetry to P2_(1)/m symmetry,and finally transformed into a non-layer I4/mmm symmetry structure.Pressure-induced metallic transition is observed at around 19.4 GPa in phaseⅡwhich aligns well with the results of the calculation.Our work will help to improve the understanding of the evolution of the structure and electrical transport properties of two-dimensional materials.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB821404the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2016YFA0300404+1 种基金the National Natural Science Foundation of China under Grant Nos 11474323,11604372,11274368,91221102,11190022,11674326 and 91422303the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020000
文摘The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020200the National Basic Research Program of China under Grant Nos 2012CB821402,2011CBA00109 and 2011CBA00101the National Natural Science Foundation of China under Grant No 11204362
文摘High-temperature superconductivity is often found in the vicinity of antiferromagnetism. This is also true in LaFeAsOl-xFx (x ≤ 0.2,) and many other iron-based superconductors, which leads to proposals that supercon- ductivity is mediated by fluctuations associated with the nearby magnetism. Here we report the discovery of a new superconductivity dome without low-energy magnetic fluctuations in LaFeAsO1-xFx with 0.25 ≤ x ≤ 0.75, where the maximal critical temperature Tc at Xopt =0.5-0.55 is even higher than that at x ≤0.2. By nuclear magnetic resonance and transmission electron microscopy, we show that a C4 rotation symmetry-breaking struc- tural transition takes place for x 〉 0.5 above To. Our results point to a new paradigm of high temperature superconductivity.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0305900)the National Nat-ural Science Foundation of China(Grant Nos.12174143,11634004,11847094,and 11804384)JLU Science and Technology Innovative Research Team(Grant No.2017TD-01)。
文摘Pentazolate compounds have attracted extensive attention as high energy density materials.The synthesis and recovery of pentazolate compounds is of great importance for their potential applications.Here,we report the synthesis of Pmn2_(1)-NaN_(5)and Pm-Na_(2)N_(5)through compressing and laser heating pure NaN_(3)at~60 GPa.Upon decompression,the pressureinduced structural transition from Pmn2_(1)-NaN_(5)into Cm-NaN_(5)is observed in the pressure range of 14-23 GPa for the first time.The cyclo-N_(5)^(-)can be traced down to 4.7 GPa at room temperature and recovered to ambient pressure under low temperature condition(up to 160 K).The Pm-Na_(2)N_(5)is suggested to decompose into the P4/mmm-NaN_(2)at 23 GPa,and be stable at ambient conditions.This work provides insight into the high-pressure behaviors of pentazolate compounds and an alternative way to stabilize energetic polynitrogen compounds.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00111the National Natural Science Foundation of China under Grant No U1332143
文摘The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity experiments. With an increase in the magnetic field H, the antiferromagnetic transition temperature TN is observed to shift progressively toward lower temperatures. The corresponding high temperature cubic (Fd3m) to low temperature tetragonal (I41amd) structural transition is tuned simultaneously due to the inherent strong spin-lattice coupling. In the antiferromagnetic phase, an anomaly at Hc2 defined as a steep downward peak in the derivative of the M-H curve is dearly drawn. It is found that TN versus H and Hc2 versus T exhibit a consistent tendency, indicative of a field-induced tetragonal (I41amd) to cubic (Fd3m) structural transition. The transition is further substantiated by the field-dependent dielectric constant and thermal conductivity measurements. We modify the T-H phase diagram, highlighting the coexistence of the paramagnetic state and ferromagnetic clusters between 100K and TN.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403the National Natural Science Foundation of China under Grant Nos 11521404,11634009,U1632102,11504230,11674222,11574202,11674226,11574201 and U1632272
文摘Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)structure of Sn surface is obtained.Superconductivity is also detected on the fcc-Sn(111)surface,and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate.Furthermore,phase transition occurs from fcc-Sn(111)toβ-Sn(001)by keeping the sample at room temperature for a certain time.Due to the strain relaxation on theβ-Sn islands,both the in-plane unit cell and out-of-plane structures distort,and the height of surface atoms varies periodically to form a universal ripple structure.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00101,2010CB923002,2011CB921703,and2012CB821404)the National Natural Science Foundation of China(Grant Nos.11274368,51272277,11074292,11004229,and11190022)the Chinese Academy of Sciences
文摘Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-Tc superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe2Pn2 (Pn = P, As, Sb) or FeeCh2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the Ko.sFe1.6+xSe2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed.
基金the National Natural Science Foundation of China(Grant No.91833302).
文摘Understanding the physical mechanism of structural stability and transition in various polytypes of layered transition metal dichalcogenides under the external stimulus is of crucial importance for their new applications.Here,we investigate the thickness-dependent structural properties of MoS2 under the condition of hydrostatic pressure in terms of bond relaxation and thermodynamics considerations.For both types of MoS2 structures,we find that the transition and metallization are significantly modulated by hydrostatic pressure and the number of layers.We establish a pressure-size phase diagram to address the transition mechanism.Our study not only provides insights into the thickness-dependent structural properties of MoS2,but also shows a theoretical guidance for the design and fabrication of MoS2-based devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1230201,11274281,and 11304294)the Industrial Technology Development Program,China(Grant No.9045140509)the Funds from the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N03 and KJCX2-SW-N20)
文摘Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ~ 12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ~50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11874417 and 12274440)the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100)the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903)。
文摘We report a comprehensive study on a layered-structure compound of NaZn_(4)As_(3),which has been predicted to be an ideal topological semimetal(TSM) candidate.It is found that NaZn_(4)As_(3) undergoes a structural transformation from high temperature rhombohedral to a low temperature monoclinic phase.The electric resistivity exhibits a metal-to-insulatorlike transition at around 100 K,and then develops a plateau at low temperature,which might be related to the protected topologically conducting surface states.Our first-principles calculation confirms further that NaZn_(4)As_(3) is a topological insulator(TI) for both different phases rather than a previously proposed TSM.The Hall resistivity reveals that the hole carriers dominate the transport properties for the whole temperature range investigated.Furthermore,an obvious kink possibly associated to the structure transition has been detected in thermopower around ~ 170 K.The large thermopower and moderate κ indicate that NaZn_(4)As_(3) and/or its derivatives can provide a good platform for optimizing and studying the thermoelectric performance.
基金Supported by the National Natural Science Foundation of China under Grant No 11474280the National Basic Research Program of China under Grant No 2011CB808200the Chinese Academy of Sciences under Grant Nos KJCX2-SW-N20 and KJCX2-SW-N03
文摘The pressure-induced structural transitions of ZnTe are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method. A phase transition from the initial zinc blende (ZB, ZnTe-Ⅰ) structure to a cinnabar phase (ZnTe-Ⅱ) is observed at 9.6 GPa, followed by a high pressure orthorhombic phase (ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa. The ZB, cinnabar (space group P3121), Cmcm, P31 and rock salt structures of ZnTe are investigated by using density functional theory calculations. Based on the experiments and calculations, the ZnTe-Ⅱ phase is determined to have a cinnabar structure rather than a P3 1 symmetry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674377 and 11634015)the National Key R&D Program of China(Grant Nos.2017YFA0302904 and 2016YFA0300502)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020200)supported by the Youth Innovation Promotion Association of CAS
文摘The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x = 0, 0.5, 1) and Ca3Rh4Snl3 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1 ) divided by temperature (T), 1/TI T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-△/kBT) with a large gap △ = 2.21kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474273 and 11634003the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2017154
文摘We investigate the electronic structures and phase stability of ZnO, CdO and the related alloys in rocksalt(B1)and wurzite(B4) crystal, using the first-principle density functional theory within the hybrid functional approximation. By varying the concentration of Zn components from 0% to 100%, we find that the Zn_xCd(1-x)O alloy undergoes a phase transition from octahedron to tetrahedron at x = 0.32, in agreement with the recent experimental findings. The phase transition leads to a mutation of the electron mobility originated from the changes of the effective mass. Our results qualify Zn O/Cd O alloy as an attractive candidate for photo-electrochemical and solar cell power applications.
基金Project supported by the Natural Science Foundation of the Chinese Academy of Sciences(Grant No.H91G750Y21)
文摘The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.
基金supported by the National Basic Research Program of China (Grant No. 2011CB808200)the National Natural Science Foundation of China (Grant Nos. 10979001, 11104105, 51025206, and 51032001)+1 种基金the Cheung Kong Scholars Programme of Chinathe Changjiang Scholar and Innovative Research Team in Universities of China (Grant No. IRT1132)
文摘Fullerene molecules are interesting materials because of their unique structures and properties in mechanical, electrical, magnetic, and optical aspects. Current research is focusing on the construction of well-defined fullerene nano/microcrystals that possess desirable structures and morphologies. Further tuning the intermolecular interaction of the fullerene nano/microcrystals by use of pressure is an efficient way to modify their structures and properties, such as creation of nanoscale polymer structures and new hybrid materials, which expands the potential of such nanoscale materials for di- rect device components. In this paper, we review our recent progress in the construction of fullerene nanostructures and their structural transformation induced by high pressure. Fullerene nano/microcrystals with controllable size, morphology and structure have been synthesized through the self-assembly of fullerene molecules by a solvent-assisted method. By virtue of high pressure, the structures, components, and intermolecular interactions of the assemblied fullerene nano/microcrystals can be finely tuned, thereby modifying the optical and electronic properties of the nanostructures. Several examples on high pressure induced novel structural phase transition in typical fullerene nanocrystals with C60 or C70 cage serving as build- ing blocks are presented, including high pressure induced amorphization of the nanocrystals and their bulk moduli, high pressure and high temperature (HPHT) induced polymerization in C60 nanocrystals, pressure tuned reversible polymeriza- tion in ferrocene-doped C60/C70 single crystal, as well as unique long-range ordered crystal with amorphous nanoclusters serving as building blocks in solvated C60 crystals, which brings new physical insight into the understanding of order and disorder concept and new approaches to the design of superhard carbon materials. The nanosize and morphology effects on the transformations of fullerene nanocrystals have also been discussed. These results provide the foundation for the fabrication of pre-designed and controllable geometries, which is critical in fullerenes and relevant materials for designing nanometer-scale electronic, optical, and other devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61674045,61911540074,and 21622304)the Fund from the Ministry of Science and Technology of China(Grant No.2016YFA0200700)+1 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences(Chinese Academy of Sciences)(Grant Nos.XDB30000000 and QYZDB-SSW-SYS031)Zhihai Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(Grant No.21XNLG27).
文摘The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been successfully fabricated via phase transition engineering.However,the understanding of structural phase transition ofβ-Sn(001)thin films is still elusive.Here,we report the direct growth of ultrathinβ-Sn(001)films epitaxially on the highly oriented pyrolytic graphite(HOPG)substrate and the characterization of intricate structural-transition-induced superstructures.The morphology was obtained by using atomic force microscopy(AFM)and low-temperature scanning tunneling microscopy(STM),indicating a structure-related bilayer-by-bilayer growth mode.The ultrathinβ-Sn film was made of multiple domains with various superstructures.Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains.The formation mechanism of these superstructures was further discussed based on the structural phase transition ofβtoα-Sn at the atomic-scale thickness.Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit,but also paves a way to investigate their structure-sensitive topological properties.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90406022, 10674159 and 60771037)the National Basic Research Program of China (Grant No 2006CB921305)
文摘Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ce islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the nacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage.
基金This work was supported by the National Natural Science Foundation of China(Nos.51972342,and 51872056)Taishan Scholar Project of Shandong Province(ts20190922)+3 种基金Key Basic Research Project of Natural Science Foundation of Shandong Province(ZR2019ZD51)Project funded by China Postdoctoral Science Foundation(2019TQ0353 and 2020M672165)Fundamental Research Funds for the Central Universities(20CX06024A)Shandong Provincial Natural Science Foundation,China(ZR201911040344).
文摘Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of portable electronics,transportation,and future robotic technologies,supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged.Transition metal compounds(TMCs)possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors.However,the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process,which greatly impede their large-scale applications.Most recently,the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges.Herein,we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies,including conductive carbon skeleton,interface engineering,and electronic structure.Furthermore,the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors.
基金Supported by the National Natural Science Foundation of China under Grant No 11404180the Natural Science Foundation of Heilongjiang Province under Grant Nos F201335,A2015010,and A2015011the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province under Grant No LBH-Q14159
文摘The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.