The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as...The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus(B)and it's pressure derivative(B') were predicted by fitting a four-parameter Birch–Murnaghan equation and the elastic constants(cij′s)are determined by an efficient strain-stress method. The calculated lattice parameters and cij′s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus(B), shear modulus(G), elastic modulus(E), B/G(bulk/shear) ratio, and anisotropy ratio(AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states(DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.展开更多
Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation ...Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).展开更多
Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole...Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole).These two energetic cocrystal polymorphs(cocrystal 1 and cocrystal 2)exhibit distinct crystal packing styles,which lead to significant variations in their physicochemical properties.Notably,cocrystal 2 has a high density of 1.963 g·cm^(-3)at 170 K,exhibiting high detonation performances(9187 m·s^(-1);38.68 GPa)comparable to HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)meanwhile displaying an improved safety(10 J)relative to RDX(1,3,5-trinitro-1,3,5-triazinane),making it a potential high-energy,low-sensitivity energetic material.This work opens up a new strategy to deeply tune properties of energetic materials by constructing energetic-energetic cocrystal polymorphs.These energetic cocrystal polymorphs represent a new field of energetic materials that has not yet been studied.展开更多
The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that o...The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.展开更多
基金Project(51021063)supported by Creative Research Group of National Natural Science Foundation of ChinaProject(2011CB610401)supported by National Basic Research Program of ChinaProject(2014M552150)supported by Postdoctoral Science Foundation of China
文摘The structural, elastic and electronic properties of Cu-X compounds in the Cu-X(X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus(B)and it's pressure derivative(B') were predicted by fitting a four-parameter Birch–Murnaghan equation and the elastic constants(cij′s)are determined by an efficient strain-stress method. The calculated lattice parameters and cij′s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus(B), shear modulus(G), elastic modulus(E), B/G(bulk/shear) ratio, and anisotropy ratio(AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states(DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.
文摘Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).
基金support for this study by the National Natural Science Foundation of China(Grant No.22275175)。
文摘Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole).These two energetic cocrystal polymorphs(cocrystal 1 and cocrystal 2)exhibit distinct crystal packing styles,which lead to significant variations in their physicochemical properties.Notably,cocrystal 2 has a high density of 1.963 g·cm^(-3)at 170 K,exhibiting high detonation performances(9187 m·s^(-1);38.68 GPa)comparable to HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)meanwhile displaying an improved safety(10 J)relative to RDX(1,3,5-trinitro-1,3,5-triazinane),making it a potential high-energy,low-sensitivity energetic material.This work opens up a new strategy to deeply tune properties of energetic materials by constructing energetic-energetic cocrystal polymorphs.These energetic cocrystal polymorphs represent a new field of energetic materials that has not yet been studied.
基金Project(51574176)supported by the National Natural Science Foundation of ChinaProject(143020142-S)supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province(TYAL),ChinaProject(201603D421028)supported by the Key Research and Development Program of Shanxi Province(International Cooperative Project),China
文摘The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.