The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus...The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus(SCN)integrates environmental signals to maintain complex and robust circadian rhythms.Understanding the complexity and synchrony within SCN neurons is essential for effective circadian clock function.Synchrony involves coordinated neuronal firing for robust rhythms,while complexity reflects diverse activity patterns and interactions,indicating adaptability.Interestingly,the SCN retains circadian rhythms in vitro,demonstrating intrinsic rhythmicity.This study introduces the multiscale structural complexity method to analyze changes in SCN neuronal activity and complexity at macro and micro levels,based on Bagrov et al.’s approach.By examining structural complexity and local complexities across scales,we aim to understand how tetrodotoxin,a neurotoxin that inhibits action potentials,affects SCN neurons.Our method captures critical scales in neuronal interactions that traditional methods may overlook.Validation with the Goodwin model confirms the reliability of our observations.By integrating experimental data with theoretical models,this study provides new insights into the effects of tetrodotoxin(TTX)on neuronal complexities,contributing to the understanding of circadian rhythms.展开更多
Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in ge...Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.展开更多
Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
In this paper,we revisit the Kahler structures on the affine quadrics M1={z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=1}in the paper by Bo Yang and Fang-Yang Zheng.We found that the Kahler structures on the complex surface are more...In this paper,we revisit the Kahler structures on the affine quadrics M1={z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=1}in the paper by Bo Yang and Fang-Yang Zheng.We found that the Kahler structures on the complex surface are more complicated than what they have thought.We shall also give some detail calculations and found that our results fit quite well with earlier papers of the first author,one of them with X.X.Chen.展开更多
Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networ...Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networks should be able to approximate the complex models, with a high degree of generalization. To achieve generalization, it is necessary to have a diverse range of examples in the training of the neural network, for example in data-driven FWI, training data should cover the expected subsurface models. To meet this requirement, we porposed a method to create geologically meaningful velocity models with complex structures and severe topography. However, it is important to note that generalization comes with its own set of challenges.Because of significant variation in topography of the generated velocity models, we need to include this information as an additional input data in training of the network. Therefore, we have transformed the seismic data to a fixed datum to incorporate geometric information. Additionally, we have enhanced the network's performance by introducing a term in the network loss function. Multiple metrics have been employed to evaluate the performance of the network. The results indicate that by providing the necessary information to the network and employing computational techniques to refine the model's accuracy, deep neural networks are capable of accurately estimating velocity models in complex environments characterized by extreme topography.展开更多
Managing mature Douglas-fir[Pseudotsuga menziesii(Mirb.)Franco]stands to emulate the structural complexity of natural old-growth forest requires identifying structural targets at the sub-stand level at which neighborh...Managing mature Douglas-fir[Pseudotsuga menziesii(Mirb.)Franco]stands to emulate the structural complexity of natural old-growth forest requires identifying structural targets at the sub-stand level at which neighborhood dynamics and patchy disturbance shape structure.We therefore sought to describe the archetypal shapes of predominant sub-stand diameter distribution types(DDTs)observed in natural tree neighborhoods in stands comprising a chronosequence(ca.120-450+yrs)encompassing mature,vertical diversification,and horizontal diversification development stages.The ten 1.0 ha stands are located in the southcentral Oregon Cascades,USA.Building on the known spatial position of each tree,natural tree neighborhoods were identified using the floating neighborhood approach based on spatial tessellation connecting neighboring trees at the first-(mean 61 m2)through fifth-(mean 2058 m2)order scales.Cluster analysis was then used to objectively identify the most predominant DDTs among the relative tree size distributions observed in the trans-scale neighborhoods within each stand.Repeated measures regression was used to classify each DDT to one of six observed archetypal shapes:negative exponential,unimodal,rotated sigmoid,bimodal,concave,or multi-modal.Only three of the 81 observed DDTs deviated by<10%from the stand average,while every stand had at least one DDT that deviated by>50%(maximum 83%).Within each stand,five to ten predominant DDTs were observed,which deviated from the stand average by 30-48%and were characterized by two to five different archetypal shapes.Consequently,in some stands the majority of tree neighborhoods were best characterized by a different shape from that assigned at the stand level.Deviation from the stand average increased from the youngest stand in the mature development stage through the middle stands in the vertical diversification stage to the oldest stands in the horizontal diversification stage.The complexity of DDT shapes tended to increase along the chronosequence(from negative exponential and uniform toward concave and multi-modal),with shape richness highest mid-sequence and evenness peaking in the oldest stands.The high diversity of sub-stand structural complexity reduces the utility of standlevel diameter distributions as old-growth restoration targets.However,the presence in early-sequence stands of sub-stand diameter distributions common to later-sequence stands may facilitate active management at the neighborhood level to promote future old-growth condition.Restoration of substand diameter structures would likely require combining spatial perspectives,such as by augmenting tree-level croptree management with diameter distribution targets for the resulting tree neighborhoods.展开更多
Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace ha...Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace have revolved around aff orestation with several or a single tree species.We thus investigated how plantation forests with either a single or several tree species infl uenced arthropod taxonomic and community composition using pitfall traps to sample selected groups of epigeal arthropods(Araneae,Coleoptera,Orthoptera and Hymenoptera)and with environmental variables assessed simultaneously.Our results revealed 54 taxonomic groups with signifi cantly higher taxonomic richness,activity density,and diversity in the mixed stands than in the monoculture stands.The significant differences in community composition were mainly driven by families including Lycosidae,Formicidae,Staphylinidae,Scotylidae,Hydrophilidae,Gryllidae and Scarabaeidae and were explained by distinct habitat characteristics(canopy openness,litter depth,deadwood volume,and tree height).While the diverse tree communities and heterogeneous vegetation structure off ered food and habitat resources for diverse arthropod groups,the allelopathic nature coupled with homogenous stand characteristics of the Tectona grandis stands in the monoculture suppressed the growth of understorey vegetation that could otherwise serve as food and habitat resources for arthropods,which might have led to limited activities and diversity of arthropods in the monoculture plantation stands.The fi ndings thus highlight the need to promote mixed tree plantations in degraded tropical areas,especially when restoring biodiversity is the prime management focus.展开更多
Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/ele...Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy.展开更多
The main purpose of this note is to construct almost complex or complex structures on certain isoparametric hypersurfaces in unit spheres.As a consequence,complex structures on S^(1)×S^(7)×S^(6),and on S^(10...The main purpose of this note is to construct almost complex or complex structures on certain isoparametric hypersurfaces in unit spheres.As a consequence,complex structures on S^(1)×S^(7)×S^(6),and on S^(10)×S^(3)×S(2)with vanishing first Chern class,are built.展开更多
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati...Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.展开更多
Heat shock proteins(Hsps)are a family of abundantly expressed ATP-dependent chaperone proteins.Hsp90 is an eminent member of Hsp family.Thus far,two primary functions have been described for Hsp90:first,as a regulator...Heat shock proteins(Hsps)are a family of abundantly expressed ATP-dependent chaperone proteins.Hsp90 is an eminent member of Hsp family.Thus far,two primary functions have been described for Hsp90:first,as a regulator of conformational change of some protein kinases and nuclear hormone receptors,and the other as an indispensable factor in cellular stress response.Hsp90 has an essential number of interaction proteins since it participates in almost every biological process and its importance is self-evident.Hsp90 has an inextricable relationship in the pathogenesis of cancer,especially in the proliferation and irradiation of cancer cells,thus being a notable cancer target.Since the discovery of geldanamycin,the first inhibitor of Hsp90,from the bacterial species Streptomyces hygroscopicus,even more attention has been focused toward Hsp90.Many structure-based inhibitors of Hsp90 have been designed to develop an innovative method to defeat cancer.However,already designed inhibitors have various deficiencies,such as hepatotoxicity,poor aqueous solubility,instability,and non-ideal oral bioavailability.Based on the aforementioned reasons and to achieve an optimal performance and fewer side effects,we designed a novel inhibitor of Hsp90,called FS5,and resolved the crystal structure of the Hsp90^N-FS5 complex(1.65 A°,PDB code 5XRB).Furthermore,we compared the complexes Hsp90^N,Hsp90^N-GDM,and Hsp90^N-ATP and suggest that the inhibitor FS5 may compete with ATP for binding to Hsp90,which can be regarded as a potential strategy for the development of novel cancer drugs in the future.展开更多
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well wi...Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes.展开更多
Phase transition and band structure tuned by uniaxial and biaxial strains are systematically investigated based on the density-functional theory for ordered All/2 Ga1/2N alloys of complex structures. Although the stru...Phase transition and band structure tuned by uniaxial and biaxial strains are systematically investigated based on the density-functional theory for ordered All/2 Ga1/2N alloys of complex structures. Although the structural transformations to graphite-like from wurtzite are energetically favorable for both types of strain, the phase transitions are different in nature: the second-order transition induced by uniaxial strain is jointly driven by the mechanical and dynamical instabilities and the first-order transition by biaxial strain only by the mechanical instability. The wurtzite phase always shows the direct band gap, while the band gap of the graphite-like phase is always indirect. Furthermore, the band gaps of the wurtzite phase can be reduced by both types of strain, while that of the graphite-like phase is enhanced by uniaxial strain and is suppressed by biaxial strain.展开更多
ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wett...ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.展开更多
To understand the dynamic characteristics of the whole period of a complex structure's launching out of water, on the basis of FEM formulations deduced for solving coupled fluid-structure problems with strong-coup...To understand the dynamic characteristics of the whole period of a complex structure's launching out of water, on the basis of FEM formulations deduced for solving coupled fluid-structure problems with strong-coupled method, FE models used to simulate the structure surrounded with fluid domains are established. The modal experiment on the real structure under shallow water shows great accordance with simulating results. Based on this verification, dynamic character parameters of all FE models simulating each phase of the structure's launching out of water are abstracted with unsymmetric algorithm, which can comprehensively describe the dynamic characters of the structure in its whole working process. Conclusions drawned from these calculations are successfully applied in works of evaluating the structure's performances and reliabilities.展开更多
Shale acoustic logging response law is complex due to the multiple minerals and pores,which limits the application of acoustic logging in shale reservoir parameter evaluation,therefore clarifying the shale acoustic lo...Shale acoustic logging response law is complex due to the multiple minerals and pores,which limits the application of acoustic logging in shale reservoir parameter evaluation,therefore clarifying the shale acoustic logging response law is of great importance.Different petrophysical models are adopted for the equivalence of organic matter,clay,matrix minerals,and fractures,in Wufeng-Longmaxi shale formation in the Jiaoshiba area.Finally,the self-consistent approximation model is used to combine different components,and a shale petrophysical model with a complex pore structure is constructed.The model verification results show it has good predictability for shale.Based on the model,the effect of different mineral compositions and different types of pores are studied.The results show that:1)The effect of clay and organic matter is very complex,and the variation laws of layered clay(organic matter)and dispersed clay(organic matter)on the acoustic wave are consistent.2)Layered clay or organic matter leads to the formation anisotropy increase,which makes the acoustic time difference greater than that of containing dispersed clay(organic matter).3)The fracture is the main control factor of anisotropy,and the anisotropy of gas-bearing fracture is higher than that of water/oil fracture.展开更多
Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated.Results show that,with adding a small amount of oxygen(oxygen-to-carbon ratio<5.0%),the crystal quality of diamond is...Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated.Results show that,with adding a small amount of oxygen(oxygen-to-carbon ratio<5.0%),the crystal quality of diamond is improved,and a suppression effect of residual nitrogen is observed.With increasing ratio of O/C from 2.5%to 20.0%,the hole concentration is firstly increased then reduced.This change of hole concentration is also explained.Moreover,the results of Hall effect measurement with temperatures from 300 K to 825 K show that,with adding a small amount of oxygen,boron and oxygen complex structures(especially B_(3)O and B_(4)O)are formed and exhibit as shallow donor in diamond,which results in increase of donor concentration.With further increase of ratio of O/C,the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration(the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%).This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen.The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration,which is applicable to electronic level of usage.展开更多
This paper presents the relations between spinors and dual characteristic pairs, and gives a way to get the dual characteristic pairs of Dirac structure associated to a generalized complex structure.
Considerable developments have been observed in fragment-based lead/drug discovery(FBLD/FBDD)recently,with four drugs approved and many others under investigation.Nuclear magnetic resonance(NMR)has gained increasing p...Considerable developments have been observed in fragment-based lead/drug discovery(FBLD/FBDD)recently,with four drugs approved and many others under investigation.Nuclear magnetic resonance(NMR)has gained increasing popularity in FBLD due to its intrinsic capability in characterizing protein-ligand interactions in a large dynamic range of affinity,from weak hits to highly potent drugs.Here,we summarize NMR applications in fragment-based hit-to-lead evolution,including the construction of a fragment library,screening methods,spectra processing,and the delineation of the protein-ligand binding modes.These state-of-the-art NMR techniques have been exemplified in the discovery of inhibitors against multiple targets over the past five years,and they are expected to continue to provide new insights in the future.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179,11875042,and 12150410309)the Natural Science Foundation of Shanghai(Grant No.21ZR1443900).
文摘The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals,coordinating physiological processes with the 24-hour day–night cycle.Comprising various cell types,the suprachiasmatic nucleus(SCN)integrates environmental signals to maintain complex and robust circadian rhythms.Understanding the complexity and synchrony within SCN neurons is essential for effective circadian clock function.Synchrony involves coordinated neuronal firing for robust rhythms,while complexity reflects diverse activity patterns and interactions,indicating adaptability.Interestingly,the SCN retains circadian rhythms in vitro,demonstrating intrinsic rhythmicity.This study introduces the multiscale structural complexity method to analyze changes in SCN neuronal activity and complexity at macro and micro levels,based on Bagrov et al.’s approach.By examining structural complexity and local complexities across scales,we aim to understand how tetrodotoxin,a neurotoxin that inhibits action potentials,affects SCN neurons.Our method captures critical scales in neuronal interactions that traditional methods may overlook.Validation with the Goodwin model confirms the reliability of our observations.By integrating experimental data with theoretical models,this study provides new insights into the effects of tetrodotoxin(TTX)on neuronal complexities,contributing to the understanding of circadian rhythms.
文摘Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
基金Supported by National Natural Science Foundation of China(Grant No.12171140).
文摘In this paper,we revisit the Kahler structures on the affine quadrics M1={z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=1}in the paper by Bo Yang and Fang-Yang Zheng.We found that the Kahler structures on the complex surface are more complicated than what they have thought.We shall also give some detail calculations and found that our results fit quite well with earlier papers of the first author,one of them with X.X.Chen.
文摘Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networks should be able to approximate the complex models, with a high degree of generalization. To achieve generalization, it is necessary to have a diverse range of examples in the training of the neural network, for example in data-driven FWI, training data should cover the expected subsurface models. To meet this requirement, we porposed a method to create geologically meaningful velocity models with complex structures and severe topography. However, it is important to note that generalization comes with its own set of challenges.Because of significant variation in topography of the generated velocity models, we need to include this information as an additional input data in training of the network. Therefore, we have transformed the seismic data to a fixed datum to incorporate geometric information. Additionally, we have enhanced the network's performance by introducing a term in the network loss function. Multiple metrics have been employed to evaluate the performance of the network. The results indicate that by providing the necessary information to the network and employing computational techniques to refine the model's accuracy, deep neural networks are capable of accurately estimating velocity models in complex environments characterized by extreme topography.
基金funded by USDA National Institute of Food and Agriculture Hatch Appropriations[#PEN04639,Accession#1015105,EZ]。
文摘Managing mature Douglas-fir[Pseudotsuga menziesii(Mirb.)Franco]stands to emulate the structural complexity of natural old-growth forest requires identifying structural targets at the sub-stand level at which neighborhood dynamics and patchy disturbance shape structure.We therefore sought to describe the archetypal shapes of predominant sub-stand diameter distribution types(DDTs)observed in natural tree neighborhoods in stands comprising a chronosequence(ca.120-450+yrs)encompassing mature,vertical diversification,and horizontal diversification development stages.The ten 1.0 ha stands are located in the southcentral Oregon Cascades,USA.Building on the known spatial position of each tree,natural tree neighborhoods were identified using the floating neighborhood approach based on spatial tessellation connecting neighboring trees at the first-(mean 61 m2)through fifth-(mean 2058 m2)order scales.Cluster analysis was then used to objectively identify the most predominant DDTs among the relative tree size distributions observed in the trans-scale neighborhoods within each stand.Repeated measures regression was used to classify each DDT to one of six observed archetypal shapes:negative exponential,unimodal,rotated sigmoid,bimodal,concave,or multi-modal.Only three of the 81 observed DDTs deviated by<10%from the stand average,while every stand had at least one DDT that deviated by>50%(maximum 83%).Within each stand,five to ten predominant DDTs were observed,which deviated from the stand average by 30-48%and were characterized by two to five different archetypal shapes.Consequently,in some stands the majority of tree neighborhoods were best characterized by a different shape from that assigned at the stand level.Deviation from the stand average increased from the youngest stand in the mature development stage through the middle stands in the vertical diversification stage to the oldest stands in the horizontal diversification stage.The complexity of DDT shapes tended to increase along the chronosequence(from negative exponential and uniform toward concave and multi-modal),with shape richness highest mid-sequence and evenness peaking in the oldest stands.The high diversity of sub-stand structural complexity reduces the utility of standlevel diameter distributions as old-growth restoration targets.However,the presence in early-sequence stands of sub-stand diameter distributions common to later-sequence stands may facilitate active management at the neighborhood level to promote future old-growth condition.Restoration of substand diameter structures would likely require combining spatial perspectives,such as by augmenting tree-level croptree management with diameter distribution targets for the resulting tree neighborhoods.
文摘Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace have revolved around aff orestation with several or a single tree species.We thus investigated how plantation forests with either a single or several tree species infl uenced arthropod taxonomic and community composition using pitfall traps to sample selected groups of epigeal arthropods(Araneae,Coleoptera,Orthoptera and Hymenoptera)and with environmental variables assessed simultaneously.Our results revealed 54 taxonomic groups with signifi cantly higher taxonomic richness,activity density,and diversity in the mixed stands than in the monoculture stands.The significant differences in community composition were mainly driven by families including Lycosidae,Formicidae,Staphylinidae,Scotylidae,Hydrophilidae,Gryllidae and Scarabaeidae and were explained by distinct habitat characteristics(canopy openness,litter depth,deadwood volume,and tree height).While the diverse tree communities and heterogeneous vegetation structure off ered food and habitat resources for diverse arthropod groups,the allelopathic nature coupled with homogenous stand characteristics of the Tectona grandis stands in the monoculture suppressed the growth of understorey vegetation that could otherwise serve as food and habitat resources for arthropods,which might have led to limited activities and diversity of arthropods in the monoculture plantation stands.The fi ndings thus highlight the need to promote mixed tree plantations in degraded tropical areas,especially when restoring biodiversity is the prime management focus.
基金the National Natural Science Foundation of China (41674131,41574118,41974146,41904109)the Fundamental Research Funds for the Central Universities (17CX06041,17CX06044)the China National Science and Technology Major Project (2016ZX05007-004,2017ZX05072-002)
文摘Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy.
基金The project is partially supported by the NSFC(11871282,11931007)BNSF(Z190003)Nankai Zhide Foundation.
文摘The main purpose of this note is to construct almost complex or complex structures on certain isoparametric hypersurfaces in unit spheres.As a consequence,complex structures on S^(1)×S^(7)×S^(6),and on S^(10)×S^(3)×S(2)with vanishing first Chern class,are built.
基金supported by the National Natural Science Foundation of China(Nos.12172078,51576026)Fundamental Research Funds for the Central Universities in China(No.DUT21LK04)。
文摘Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.
基金supported by the Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases,Ministry of Education(No.XN201904)Gannan Medical University(No.QD201910)+1 种基金the National Natural Science Foundation of China(Nos.31770795 and 31971043)the Jiangxi Province Natural Science Foundation(No.20181ACB20014)
文摘Heat shock proteins(Hsps)are a family of abundantly expressed ATP-dependent chaperone proteins.Hsp90 is an eminent member of Hsp family.Thus far,two primary functions have been described for Hsp90:first,as a regulator of conformational change of some protein kinases and nuclear hormone receptors,and the other as an indispensable factor in cellular stress response.Hsp90 has an essential number of interaction proteins since it participates in almost every biological process and its importance is self-evident.Hsp90 has an inextricable relationship in the pathogenesis of cancer,especially in the proliferation and irradiation of cancer cells,thus being a notable cancer target.Since the discovery of geldanamycin,the first inhibitor of Hsp90,from the bacterial species Streptomyces hygroscopicus,even more attention has been focused toward Hsp90.Many structure-based inhibitors of Hsp90 have been designed to develop an innovative method to defeat cancer.However,already designed inhibitors have various deficiencies,such as hepatotoxicity,poor aqueous solubility,instability,and non-ideal oral bioavailability.Based on the aforementioned reasons and to achieve an optimal performance and fewer side effects,we designed a novel inhibitor of Hsp90,called FS5,and resolved the crystal structure of the Hsp90^N-FS5 complex(1.65 A°,PDB code 5XRB).Furthermore,we compared the complexes Hsp90^N,Hsp90^N-GDM,and Hsp90^N-ATP and suggest that the inhibitor FS5 may compete with ATP for binding to Hsp90,which can be regarded as a potential strategy for the development of novel cancer drugs in the future.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. YWF-10-02-040)
文摘Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No 2013QNA38
文摘Phase transition and band structure tuned by uniaxial and biaxial strains are systematically investigated based on the density-functional theory for ordered All/2 Ga1/2N alloys of complex structures. Although the structural transformations to graphite-like from wurtzite are energetically favorable for both types of strain, the phase transitions are different in nature: the second-order transition induced by uniaxial strain is jointly driven by the mechanical and dynamical instabilities and the first-order transition by biaxial strain only by the mechanical instability. The wurtzite phase always shows the direct band gap, while the band gap of the graphite-like phase is always indirect. Furthermore, the band gaps of the wurtzite phase can be reduced by both types of strain, while that of the graphite-like phase is enhanced by uniaxial strain and is suppressed by biaxial strain.
基金Project supported by the 973 Program of China (Grant No. 2006CB302900)National Natural Science Foundation of China(Grant No. 50872129)
文摘ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.
文摘To understand the dynamic characteristics of the whole period of a complex structure's launching out of water, on the basis of FEM formulations deduced for solving coupled fluid-structure problems with strong-coupled method, FE models used to simulate the structure surrounded with fluid domains are established. The modal experiment on the real structure under shallow water shows great accordance with simulating results. Based on this verification, dynamic character parameters of all FE models simulating each phase of the structure's launching out of water are abstracted with unsymmetric algorithm, which can comprehensively describe the dynamic characters of the structure in its whole working process. Conclusions drawned from these calculations are successfully applied in works of evaluating the structure's performances and reliabilities.
基金financially supported by the National Natural Science Foundation of China(NSFC)Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(Grant No.U19B6003-04-03-03)The Key Project of Sinopec Ministry of Science and Technology(Grant No.PE19012-1)the National Research Council of Science and Technology Major Project(Grant No.2016ZX05060-001-012)。
文摘Shale acoustic logging response law is complex due to the multiple minerals and pores,which limits the application of acoustic logging in shale reservoir parameter evaluation,therefore clarifying the shale acoustic logging response law is of great importance.Different petrophysical models are adopted for the equivalence of organic matter,clay,matrix minerals,and fractures,in Wufeng-Longmaxi shale formation in the Jiaoshiba area.Finally,the self-consistent approximation model is used to combine different components,and a shale petrophysical model with a complex pore structure is constructed.The model verification results show it has good predictability for shale.Based on the model,the effect of different mineral compositions and different types of pores are studied.The results show that:1)The effect of clay and organic matter is very complex,and the variation laws of layered clay(organic matter)and dispersed clay(organic matter)on the acoustic wave are consistent.2)Layered clay or organic matter leads to the formation anisotropy increase,which makes the acoustic time difference greater than that of containing dispersed clay(organic matter).3)The fracture is the main control factor of anisotropy,and the anisotropy of gas-bearing fracture is higher than that of water/oil fracture.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFB0406502,2017YFF0210800,and 2017YFB0403003)the National Natural Science Foundation of China(Grant Nos.61774081,61775203,61574075,61974059,61674077,and 91850112)+2 种基金the State Key Research and Development Project of Jiangsu,China(Grant No.BE2018115)State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices(Grant No.2017KF001)Anhui University Natural Science Research Project(Grant No.KJ2021A0037)
文摘Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated.Results show that,with adding a small amount of oxygen(oxygen-to-carbon ratio<5.0%),the crystal quality of diamond is improved,and a suppression effect of residual nitrogen is observed.With increasing ratio of O/C from 2.5%to 20.0%,the hole concentration is firstly increased then reduced.This change of hole concentration is also explained.Moreover,the results of Hall effect measurement with temperatures from 300 K to 825 K show that,with adding a small amount of oxygen,boron and oxygen complex structures(especially B_(3)O and B_(4)O)are formed and exhibit as shallow donor in diamond,which results in increase of donor concentration.With further increase of ratio of O/C,the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration(the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%).This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen.The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration,which is applicable to electronic level of usage.
基金Supported by the Science and Technology Project of Beijing Municipal Commission of Education(SQKM201211232017) Supported by the National Science Foundation of China(Ill26152)
文摘This paper presents the relations between spinors and dual characteristic pairs, and gives a way to get the dual characteristic pairs of Dirac structure associated to a generalized complex structure.
基金We thank the Ministry of Science and Technology of China(2019YFA0508400 and 2016YFA0500700)the National Natural Science Foundation of China(21874123 and 21807095)Collaborative Innovation Program of Hefei Science Center,CAS(2020HSC-CIP009)for the financial support.
文摘Considerable developments have been observed in fragment-based lead/drug discovery(FBLD/FBDD)recently,with four drugs approved and many others under investigation.Nuclear magnetic resonance(NMR)has gained increasing popularity in FBLD due to its intrinsic capability in characterizing protein-ligand interactions in a large dynamic range of affinity,from weak hits to highly potent drugs.Here,we summarize NMR applications in fragment-based hit-to-lead evolution,including the construction of a fragment library,screening methods,spectra processing,and the delineation of the protein-ligand binding modes.These state-of-the-art NMR techniques have been exemplified in the discovery of inhibitors against multiple targets over the past five years,and they are expected to continue to provide new insights in the future.