Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D...Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.展开更多
In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method...In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.展开更多
A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, th...A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, the dense grids are adjusted accordingly. Four cases with different loads are compared, thus the influences of different loads on the section are analyzed. Numerical results show that the maximum stress of the section is lower than the strength limit of the material, and the section will not be broken with the static loads.展开更多
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ...Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.展开更多
高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框...高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。展开更多
基金Foundation item: Project(IRTl125) supported by the Program for Changjiang Scholars and Innovative Research Team in Universities of China Project(B13024) supported by the "111" Project Project(BK2012811) supported by the Natural Science Foundation of Jiangsu Province, China
文摘Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.
基金Projects(51305091,51475101)supported by the National Natural Science Foundation of ChinaProject(20132304120025)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.
文摘A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, the dense grids are adjusted accordingly. Four cases with different loads are compared, thus the influences of different loads on the section are analyzed. Numerical results show that the maximum stress of the section is lower than the strength limit of the material, and the section will not be broken with the static loads.
基金Project(61273187)supported by the National Natural Science Foundation of ChinaProject(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.
文摘高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。