实车动力电池的健康状态(state of health,SOH)评估存在数据质量差、工况不统一、数据利用率低等问题,本文面向阶梯倍率充电工况构建多源特征提取及SOH估计模型。首先,通过数据清洗、切割、填充,获取独立的充电片段;其次,基于不同电流...实车动力电池的健康状态(state of health,SOH)评估存在数据质量差、工况不统一、数据利用率低等问题,本文面向阶梯倍率充电工况构建多源特征提取及SOH估计模型。首先,通过数据清洗、切割、填充,获取独立的充电片段;其次,基于不同电流阶段计算容量,实现原始数据利用率达96.9%,并与单独限定SOC范围计算容量的方法相比,误差降低48.1%以上;然后,从当前工况、历史累积两个维度提取多个健康因子,对于当前工况特征值,通过灰色关联度及干扰性随机森林重要度分析双重筛选。对于历史累积特征值,利用Spearson相关性分析和核主成分分析方法(kernel principal component analysis,KPCA)降低信息冗余;最后,对门控循环单元网络模型(gated recurrent unit,GRU)引入注意力机制和龙格库塔优化算法(Runge Kutta optimizer,RUN),建立RUN-GRU-attention模型,基于实车运行数据集与现有5种模型进行对比,实验结果表明,无论是包含单阶段还是多阶段电流的测试样本,优化模型的估计精度更佳,误差不高于0.0086,并且随着充电循环次数增加表现出良好的误差收敛性,可有效预测SOH波动趋势。展开更多
从提高自适应均衡算法水声信号收敛性能的角度出发,提出了一种新的快速收敛水声信道自适应均衡算法。该算法将改进的归一化均方误差算法和判决反馈均衡器结构有机结合,在不增加计算量的前提下,很好地实现了不同水声信道的自适应均衡,易...从提高自适应均衡算法水声信号收敛性能的角度出发,提出了一种新的快速收敛水声信道自适应均衡算法。该算法将改进的归一化均方误差算法和判决反馈均衡器结构有机结合,在不增加计算量的前提下,很好地实现了不同水声信道的自适应均衡,易于算法的硬件实现。仿真结果表明,该算法计算量同归一化最小均方(normalized least mean square,NLMS)误差算法的计算量相当,但在稳态误差和收敛速度上有很大优势;收敛性能与自适应调整最小二乘回归-判决反馈均衡器(variable tap-length decision feed-back equalizer based on recursiveleast square,RLS-DFE)算法接近,却克服了RLS-DFE算法计算量大,不利于硬件实现的实际问题。提出的算法为水声通信提供了一种性能优良的可实现方法,具有较高的应用价值。展开更多
文摘实车动力电池的健康状态(state of health,SOH)评估存在数据质量差、工况不统一、数据利用率低等问题,本文面向阶梯倍率充电工况构建多源特征提取及SOH估计模型。首先,通过数据清洗、切割、填充,获取独立的充电片段;其次,基于不同电流阶段计算容量,实现原始数据利用率达96.9%,并与单独限定SOC范围计算容量的方法相比,误差降低48.1%以上;然后,从当前工况、历史累积两个维度提取多个健康因子,对于当前工况特征值,通过灰色关联度及干扰性随机森林重要度分析双重筛选。对于历史累积特征值,利用Spearson相关性分析和核主成分分析方法(kernel principal component analysis,KPCA)降低信息冗余;最后,对门控循环单元网络模型(gated recurrent unit,GRU)引入注意力机制和龙格库塔优化算法(Runge Kutta optimizer,RUN),建立RUN-GRU-attention模型,基于实车运行数据集与现有5种模型进行对比,实验结果表明,无论是包含单阶段还是多阶段电流的测试样本,优化模型的估计精度更佳,误差不高于0.0086,并且随着充电循环次数增加表现出良好的误差收敛性,可有效预测SOH波动趋势。
文摘从提高自适应均衡算法水声信号收敛性能的角度出发,提出了一种新的快速收敛水声信道自适应均衡算法。该算法将改进的归一化均方误差算法和判决反馈均衡器结构有机结合,在不增加计算量的前提下,很好地实现了不同水声信道的自适应均衡,易于算法的硬件实现。仿真结果表明,该算法计算量同归一化最小均方(normalized least mean square,NLMS)误差算法的计算量相当,但在稳态误差和收敛速度上有很大优势;收敛性能与自适应调整最小二乘回归-判决反馈均衡器(variable tap-length decision feed-back equalizer based on recursiveleast square,RLS-DFE)算法接近,却克服了RLS-DFE算法计算量大,不利于硬件实现的实际问题。提出的算法为水声通信提供了一种性能优良的可实现方法,具有较高的应用价值。