The nonseparable optimization control problem is considered, where the overall objective function is not of an additive form with respect to subsystems. Since there exists the problem that computation is very slow whe...The nonseparable optimization control problem is considered, where the overall objective function is not of an additive form with respect to subsystems. Since there exists the problem that computation is very slow when using iteratire algorithms in multiobjective optimization, Hopfield optimization hierarchical network based on IPM is presented to overcome such slow computation difficulty. Asymptotic stability of this Hopfield network is proved and its equilibrium point is the optimal point of the original problem. The simulation shows that the net is effective to deal with the optimization control problem for large-scale non.separable steady state systems.展开更多
基金This project was supported by Postdoctoral Follows Foundation (2001)5 .
文摘The nonseparable optimization control problem is considered, where the overall objective function is not of an additive form with respect to subsystems. Since there exists the problem that computation is very slow when using iteratire algorithms in multiobjective optimization, Hopfield optimization hierarchical network based on IPM is presented to overcome such slow computation difficulty. Asymptotic stability of this Hopfield network is proved and its equilibrium point is the optimal point of the original problem. The simulation shows that the net is effective to deal with the optimization control problem for large-scale non.separable steady state systems.