目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流...目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流行病学依据。方法:选取年龄标化发病率、病死率、伤残调整寿命年(disability adjusted life year,DALY)率作为疾病负担的评价指标,按照不同年龄、性别、社会人口学指数及其相关危险因素进行分层分析,同时应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和贝叶斯年龄-时期-队列分析模型(Bayesian age-period-cohort,BAPC)将年龄标化发病率预测至2050年。结果:2021年中国鼻咽癌年龄标化发病率、病死率、DALY率分别为3.4/10万、1.5/10万、48.7/10万,均高于同期全球水平。在所有年龄段,中国男性年龄标化发病率、病死率、DALY率均高于女性。中国鼻咽癌的疾病负担从1990至2021年随着社会人口学指数(socio-demographic index,SDI)的增高逐渐降低。中国归因于饮酒、吸烟、职业甲醛暴露的鼻咽癌疾病负担占比均高于全球水平,且在男性中尤为显著。模型预测中国及全球男性、女性、全人群的年龄标化发病率均提示从2022至2050年呈上升趋势。结论:既往30年中国鼻咽癌的疾病负担随着SDI的升高逐渐降低,但仍高于同期全球水平。同时,中国鼻咽癌的年龄标化发病率在未来30年呈上升趋势。中国仍需进一步增加医疗资源的投入以应对鼻咽癌的防控与诊疗,尤其针对高风险男性群体。展开更多
文摘目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流行病学依据。方法:选取年龄标化发病率、病死率、伤残调整寿命年(disability adjusted life year,DALY)率作为疾病负担的评价指标,按照不同年龄、性别、社会人口学指数及其相关危险因素进行分层分析,同时应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和贝叶斯年龄-时期-队列分析模型(Bayesian age-period-cohort,BAPC)将年龄标化发病率预测至2050年。结果:2021年中国鼻咽癌年龄标化发病率、病死率、DALY率分别为3.4/10万、1.5/10万、48.7/10万,均高于同期全球水平。在所有年龄段,中国男性年龄标化发病率、病死率、DALY率均高于女性。中国鼻咽癌的疾病负担从1990至2021年随着社会人口学指数(socio-demographic index,SDI)的增高逐渐降低。中国归因于饮酒、吸烟、职业甲醛暴露的鼻咽癌疾病负担占比均高于全球水平,且在男性中尤为显著。模型预测中国及全球男性、女性、全人群的年龄标化发病率均提示从2022至2050年呈上升趋势。结论:既往30年中国鼻咽癌的疾病负担随着SDI的升高逐渐降低,但仍高于同期全球水平。同时,中国鼻咽癌的年龄标化发病率在未来30年呈上升趋势。中国仍需进一步增加医疗资源的投入以应对鼻咽癌的防控与诊疗,尤其针对高风险男性群体。
文摘蒸散发(Evapotranspiration,ET)是作物需水量的核心组分,也是区域水资源优化配置的关键依据。本文以陕西关中宝鸡峡灌区夏玉米为研究对象,采用BP神经网络(Back propagation neural network,BPNN)、支持向量机(Support vector machine,SVM)、极限学习机(Extreme learning machine,ELM)和极致梯度提升树(eXtreme gradient boosting,XGBoost)4种机器学习算法构建无人机-卫星多源遥感数据协同校正模型,并以最优算法建立的模型校正卫星多光谱数据,实现无人机和卫星数据的尺度转换。利用校正后高精度卫星数据反演夏玉米叶面积指数(Leaf area index,LAI)与株高(Crop height,hc)为蒸散发模型提供数据输入。分别采用双作物系数法、METRIC模型及Penman-Monteith(P-M)冠层阻力模型进行夏玉米蒸散发估算,引入贝叶斯模型平均(Bayesian model averaging,BMA)实现不同生育阶段各方法/模型权重的动态分配,最终得到玉米拔节-完熟期性能稳健的蒸散发BMA融合模型。结果表明:XGBoost算法在夏玉米拔节-完熟期的B/G/R/NIR波段建模精度均为最高,四波段建模结果决定系数(Coefficient of determination,R^(2))较算法ELM高出8.43%、8.67%、6.79%和10.41%;校正后的卫星多光谱数据LAI与hc反演结果R^(2)较原始卫星数据分别平均提高97%和67.5%;BMA融合模型在夏玉米拔节-抽雄期和蜡熟-完熟期较单一最优方法/模型(METRIC模型)均方根误差(Root mean squared error,RMSE)降低39.3%~58.5%。本研究利用“协同校正-动态融合”显著提升了蒸散发遥感监测精度,可为水资源精细化管理提供理论支撑。