期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于电池低频阻抗快速提取的SOH估计方法
1
作者 沈浩然 范国栋 +5 位作者 张希 王慧 朱正礼 王诗杰 朱晓琼 李凯 《电池》 北大核心 2025年第3期470-477,共8页
锂离子电池的电化学阻抗谱(EIS)数据能体现电池健康状态(SOH)。传统的EIS测量使用多频交流电作为激励,对专业测量设备的依赖性较高。用方波电流作为输入激励,结合小波变换的方法,能快速测得并提取电池在一定频率范围内的阻抗谱数据。进... 锂离子电池的电化学阻抗谱(EIS)数据能体现电池健康状态(SOH)。传统的EIS测量使用多频交流电作为激励,对专业测量设备的依赖性较高。用方波电流作为输入激励,结合小波变换的方法,能快速测得并提取电池在一定频率范围内的阻抗谱数据。进一步对各频段的阻抗与电池SOH的相关性进行分析,基于低频阻抗与电池容量衰减的强相关性,使用高斯过程回归模型,实现电池的SOH估计。用7只Li_(x)Ni_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)锂离子电池的实验数据分组验证,将1 Hz阻抗用作特征阻抗频率时,SOH估计的平均相对误差为1.14%。 展开更多
关键词 锂离子电池 电化学阻抗谱(EIS) 机器学习 高斯过程回归 健康状态(soh)估计
在线阅读 下载PDF
多元宇宙优化估算锂离子电池的SOC与SOH 被引量:1
2
作者 朱冰 夏天 《电池》 CAS 北大核心 2024年第5期688-692,共5页
估计电池的荷电状态(SOC)和健康状态(SOH)是锂离子电池管理中最复杂的任务之一。目前,针对SOC和SOH的估计存在跟踪值误差较大、噪声误差较大和计算量大等问题,引入多元宇宙优化(MVO)算法,对照电池的实际输出电压,模型的拟合度可达95.3%... 估计电池的荷电状态(SOC)和健康状态(SOH)是锂离子电池管理中最复杂的任务之一。目前,针对SOC和SOH的估计存在跟踪值误差较大、噪声误差较大和计算量大等问题,引入多元宇宙优化(MVO)算法,对照电池的实际输出电压,模型的拟合度可达95.3%。通过14次迭代得到SOC的稳定估计值,与传统的循环次数法对比,SOH估计的稳定性提高了119%,并减小了78%的计算空间需求。 展开更多
关键词 算法 状态估计 多元宇宙优化(MVO) 荷电状态(SOC) 健康状态(soh) 储能
在线阅读 下载PDF
基于非参数模型与粒子滤波的锂电池SOH估计 被引量:5
3
作者 贺宁 杨紫琦 钱成 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期148-159,共12页
健康状态(state of health,SOH)是电池管理系统的重要参考依据,准确的SOH估计对保证电池安全稳定运行具有重大意义,其中提取可靠有效的健康特征描述电池老化状态以及构建精确稳定的估计模型是目前面临的主要问题。为了提高SOH估计精度,... 健康状态(state of health,SOH)是电池管理系统的重要参考依据,准确的SOH估计对保证电池安全稳定运行具有重大意义,其中提取可靠有效的健康特征描述电池老化状态以及构建精确稳定的估计模型是目前面临的主要问题。为了提高SOH估计精度,提出了一种基于模糊熵和粒子滤波(particle filter,PF)的锂离子电池SOH估计方法。首先,通过分析电池老化过程中的放电电压数据,提取模糊熵值作为电池的老化特征;其次,基于代谢灰色模型(metabolic grey model,MGM)和时间卷积网络(temporal convolutional network,TCN)构建描述锂电池老化特征的非参数状态空间模型;最后,通过PF实现锂电池SOH的闭环估计。此外,利用NASA锂电池数据集对所提出的SOH估计方法进行了验证,并与该领域其他方法进行对比实验。结果表明,所提方法最大估计误差在5%左右,相比于同类方法其估计精度提升了约50%,且在不同训练周期数条件下表现出较好的鲁棒性,验证了所提方法的可行性与优越性。 展开更多
关键词 锂离子电池 健康状态估计 模糊熵 粒子滤波 闭环估计
在线阅读 下载PDF
基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计 被引量:2
4
作者 屈克庆 董浩 +3 位作者 毛玲 赵晋斌 杨建林 李芬 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期263-272,共10页
锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方... 锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方法.该方法通过dQ/dV和dT/dV曲线分析,筛选出与电池SOH相关性较高的数据区间进行多维健康特征提取,并对其进行主成分分析降维处理得到间接健康因子;利用极限学习机的随机学习算法建立间接健康因子和SOH之间的非线性映射关系.在此基础上,针对单一模型输出不稳定的特点,提出一种集成极限学习机模型,通过对估计结果设置可信度评价规则剔除单一极限学习机不可靠的输出,从而提高锂离子电池SOH的估计精度.使用NASA和牛津大学的锂离子电池老化数据集对该方法进行验证,结果表明该方法的平均绝对百分比误差小于1%,具有较高的准确性和可靠性. 展开更多
关键词 锂离子电池 健康因子 集成极限学习机 健康状态在线估计
在线阅读 下载PDF
基于恒压充电数据的锂离子电池SOH估计
5
作者 杨驹丰 李哲 +3 位作者 王振 邬明宇 马迷娜 栗欢欢 《电池》 CAS 北大核心 2024年第6期815-820,共6页
准确估算健康状态(SOH),对锂离子电池的安全运行至关重要。基于恒压(CV)充电工况中的电流数据,提取电流曲线差异性参数作为健康特征(HI),并结合灰狼优化(GWO)-支持向量机回归(SVR)算法,构建HI与SOH的映射关系,获得SOH估计模型。基于两... 准确估算健康状态(SOH),对锂离子电池的安全运行至关重要。基于恒压(CV)充电工况中的电流数据,提取电流曲线差异性参数作为健康特征(HI),并结合灰狼优化(GWO)-支持向量机回归(SVR)算法,构建HI与SOH的映射关系,获得SOH估计模型。基于两组公开电池测试数据集的验证表明,在完整及非完整CV充电工况下,所提方法的SOH估计均方根误差均低于2%。基于GWO-SVR、SVR和高斯过程回归等算法的电池SOH估计误差表明,所提方法的综合性能较好。 展开更多
关键词 锂离子电池 健康状态(soh)估计 恒压(CV)充电 灰狼优化(GWO)算法 支持向量机回归(SVR)
在线阅读 下载PDF
基于SSA-BPNN的锂离子电池SOH估算
6
作者 张凯飞 张金龙 吕满平 《电源学报》 CSCD 北大核心 2024年第5期278-285,318,共9页
锂离子电池已被广泛应用于储能系统与电动汽车中,精确地估算锂离子电池健康状态SOH(state-of-health)是保证系统安全可靠运行的必要条件。从容量的角度分析SOH,在恒流-恒压CC-CV(constant current-constant voltage)充电电压和温度曲线... 锂离子电池已被广泛应用于储能系统与电动汽车中,精确地估算锂离子电池健康状态SOH(state-of-health)是保证系统安全可靠运行的必要条件。从容量的角度分析SOH,在恒流-恒压CC-CV(constant current-constant voltage)充电电压和温度曲线中提取了7个健康特征HI(health indicator)作为输入,基于数据驱动法提出了麻雀搜索算法-反向传播神经网络SSA-BPNN(sparrow search algorithm-back propagation neural network)的锂离子电池SOH估算方法,并应用数据增强进一步提高模型的鲁棒性,最终在NASA锂离子电池随机使用数据集上进行验证。通过与未采取数据增强的传统BP神经网络相比,获得SOH估算精度有明显提升,测试集SOH估算的最大绝对误差和均方根误差分别小于3%和1.32%,实验结果表明该方法兼顾误差小,收敛快,全局搜索能力且能够适应电池老化差异特性。 展开更多
关键词 锂离子电池 健康状态估算 数据驱动 SSA-BPNN 数据增强
在线阅读 下载PDF
基于特征综合评价和模型优化的锂离子电池健康状态估计方法
7
作者 黄凯 郝润凯 郭永芳 《电力系统及其自动化学报》 北大核心 2025年第5期131-140,共10页
针对特征评价指标性能单一、预测模型特征捕捉能力不足和超参数难以确定等问题,提出基于特征综合评价和模型优化的锂离子电池健康状态(state-of-health,SOH)估计方法。首先,从原理和统计角度构建特征的综合评价指标,选取指标得分较高的... 针对特征评价指标性能单一、预测模型特征捕捉能力不足和超参数难以确定等问题,提出基于特征综合评价和模型优化的锂离子电池健康状态(state-of-health,SOH)估计方法。首先,从原理和统计角度构建特征的综合评价指标,选取指标得分较高的特征作为模型输入;其次,结合卷积神经网络(convolutional neural networks,CNN)、高效局部注意力(efficient local attention,ELA)和双向门控循环单元(bi-directional gated recurrent unit,BiGRU)建立CNN-ELA-BiGRU预测模型,增强模型捕捉特征的能力;最后,利用金豺优化(golden jackal optimization,GJO)算法对模型进行超参数寻优,提高了模型的预测精度。对比实验结果表明,所提SOH估计方法具有良好的稳定性和鲁棒性。 展开更多
关键词 锂离子电池 特征综合评价指标 高效局部注意力 金豺优化算法 健康状态估计
在线阅读 下载PDF
电动汽车动力电池SOH估计方法探讨 被引量:4
8
作者 邓涛 罗卫兴 《现代制造工程》 CSCD 北大核心 2018年第5期43-49,共7页
实时估计电动汽车动力电池健康状态(State of Health,SOH),对于充分保证每个电池组的充/放电性能,延长整个电池组的寿命具有重要意义。作为电池管理系统的重要组成部分,相比于电池荷电状态(State of Charge,SOC)和电池均衡系统的研究,SO... 实时估计电动汽车动力电池健康状态(State of Health,SOH),对于充分保证每个电池组的充/放电性能,延长整个电池组的寿命具有重要意义。作为电池管理系统的重要组成部分,相比于电池荷电状态(State of Charge,SOC)和电池均衡系统的研究,SOH估计方法的研究明显落后。简单介绍了SOH的定义及影响因素,按照离线估计方法和在线估计方法进行分类,探讨了常见的SOH估计方法。最后展望了SOH估计方法的发展趋势,指出基于卡尔曼滤波的在线估计和智能学习神经网络的方法将是未来的主流方法。 展开更多
关键词 电动汽车 动力电池 健康状态 估计方法
在线阅读 下载PDF
基于新型健康特征的锂电池健康状态快速估计方法 被引量:1
9
作者 董晓红 董进波 +2 位作者 王明深 曾飞 潘益 《电力工程技术》 北大核心 2025年第1期136-142,206,共8页
锂电池健康状态(state of health,SOH)的在线估计是锂电池管理系统中必不可少的一部分。大部分基于数据驱动的锂电池SOH估计方法由于计算量较大,难以在锂电池管理系统微控制器中在线使用。因此,文中提出基于新型健康特征的锂电池SOH快... 锂电池健康状态(state of health,SOH)的在线估计是锂电池管理系统中必不可少的一部分。大部分基于数据驱动的锂电池SOH估计方法由于计算量较大,难以在锂电池管理系统微控制器中在线使用。因此,文中提出基于新型健康特征的锂电池SOH快速估计方法。首先,分析锂电池的充电数据,基于已有的锂电池恒流充电过程的等压升时间(time interval of an equal charging voltage difference,TIECVD)健康特征,构建一个同充电电压起点、同充电时间间隔的健康特征。其次,文中提出基于新型健康特征和多元线性回归(multiple linear regression,MLR)的锂电池SOH快速估计方法。然后,通过对牛津锂电池老化数据集和美国国家航空航天局锂电池随机使用数据集进行分析,以0.01 V步长遍历恒流充电电压区间,以皮尔逊相关系数最大为目标,确定锂电池最优的起始电压。最后,考虑不同充电时间间隔,利用最小二乘(ordinary least squares,OLS)回归分析方法,确定锂电池最优充电时间间隔参数。使用2个数据集划分的训练集建立MLR模型,使用2个数据集划分的验证集对文中方法进行验证。实验结果表明,文中基于新型健康特征方法可极大缩减计算量,并且可以在保障预测精度的前提下实现锂电池SOH的快速估计。 展开更多
关键词 锂电池 健康状态(soh)估计 新型健康特征 数据驱动方法 多元线性回归(MLR) 充电电压数据片段
在线阅读 下载PDF
基于证据推理规则CS-SVR模型的锂离子电池SOH估算 被引量:10
10
作者 徐宏东 高海波 +2 位作者 徐晓滨 林治国 盛晨兴 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第4期413-421,共9页
锂离子电池健康状态(SOH)的准确性影响电池的安全性和使用寿命.针对锂离子电池SOH估算问题,提出一种基于证据推理(ER)规则的布谷鸟搜索支持向量回归(CS-SVR)的SOH估算模型,并利用NASA Ames研究中心的锂离子电池数据集进行SOH估算试验.... 锂离子电池健康状态(SOH)的准确性影响电池的安全性和使用寿命.针对锂离子电池SOH估算问题,提出一种基于证据推理(ER)规则的布谷鸟搜索支持向量回归(CS-SVR)的SOH估算模型,并利用NASA Ames研究中心的锂离子电池数据集进行SOH估算试验.该方法以电池放电循环的平均放电电压和平均放电温度为模型输入,利用ER规则进行推理,得到输入数据的融合信度矩阵.将该矩阵输入CS算法优化的SVR模型得到电池SOH估算结果.结果表明,与5种估算效果较好的现有模型相比,基于ER规则的CS-SVR模型具有更良好的估算性能. 展开更多
关键词 锂离子电池 证据推理规则 布谷鸟搜索 健康状态估算 支持向量回归
在线阅读 下载PDF
基于多方法融合的锂离子电池SOC-SOH联合估计 被引量:7
11
作者 王志福 罗崴 +1 位作者 闫愿 李仁杰 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第6期575-584,共10页
健康状态估计对电池的实用性和经济性具有指导意义.针对电池健康状态估计难度大且估计结果极易受噪声的影响,但融合算法估计效果好且受噪声影响小,提出了基于粒子群优化深度置信网络和自适应扩展卡尔曼/自适应H_(∞)滤波((PSO-DBN)-AEKF... 健康状态估计对电池的实用性和经济性具有指导意义.针对电池健康状态估计难度大且估计结果极易受噪声的影响,但融合算法估计效果好且受噪声影响小,提出了基于粒子群优化深度置信网络和自适应扩展卡尔曼/自适应H_(∞)滤波((PSO-DBN)-AEKF/AHIFF)融合算法在卷积神经网络(CNN)模型下的锂离子电池SOC-SOH联合估计.首先对于健康状态(SOH)数据的预处理环节采用小波变换的方法使得噪声显著去除.其次将去噪后的数据代入训练好的CNN模型进行SOH估计,并融合((PSO-DBN)-AEKF/AHIFF)算法进行健康状态估计,最后在DST工况和UDDS工况下,搭建Matlab/Simulink/Python环境下的Typhoon HIL602+硬件在环平台进行联合估计的验证,结果显示健康状态的估计误差在1%以内,荷电状态(SOC)的估计误差在2%以内,由此证明了多方法融合的SOC-SOH联合估计的有效性,且具有较好的估计精度和鲁棒性. 展开更多
关键词 锂离子电池 健康状态(soh) 多算法融合 荷电状态(SOC) 联合估计
在线阅读 下载PDF
由MIEKPF-EKPF算法协同估计锂离子电池SOC与SOH 被引量:6
12
作者 于智斌 田易之 《电池》 CAS 北大核心 2023年第2期160-164,共5页
针对锂离子电池荷电状态(SOC)和健康状态(SOH)难以直接测量的问题,提出基于多新息的扩展卡尔曼粒子滤波(MIEKPF)与扩展卡尔曼粒子滤波(EKPF)协同估计SOC和SOH。采用EKPF算法在线辨识参数,并估计SOH,将阻容等辨识结果作为输入,弥补估计SO... 针对锂离子电池荷电状态(SOC)和健康状态(SOH)难以直接测量的问题,提出基于多新息的扩展卡尔曼粒子滤波(MIEKPF)与扩展卡尔曼粒子滤波(EKPF)协同估计SOC和SOH。采用EKPF算法在线辨识参数,并估计SOH,将阻容等辨识结果作为输入,弥补估计SOC时应该考虑电池老化影响产生的误差,实现SOH对SOC的修正,提高模型精度。在新欧洲驾驶周期(NEDC)工况下,进行充放电实验,EKPF算法估计SOH的结果符合实际情况。MIEKPF-EKPF算法最终SOC估计的平均误差为0.48%、最大误差为1.97%、均方根误差为0.58%,仿真结果验证了所提方法的可行性和准确性。 展开更多
关键词 荷电状态(SOC) 健康状态(soh) 扩展卡尔曼粒子滤波(EKPF) 协同估计
在线阅读 下载PDF
基于ICA和Box-Cox变换的锂离子电池SOH估计方法 被引量:4
13
作者 张吉昂 王萍 程泽 《电力系统及其自动化学报》 CSCD 北大核心 2022年第2期9-15,共7页
对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲... 对锂离子电池的健康状态SOH(state of health)进行准确估计是锂离子电池安全稳定运行的重要保障,提出了一种基于容量增量分析ICA(incremental capacity analysis)和Box-Cox变换的锂离子电池SOH估计方法。首先,将电池恒流充电过程的IC曲线峰值高度ICP(peak of incremental capacity curve)作为健康特征HF(health factor),数学推导出ICP与健康状态的强相关性。结合卡尔曼滤波算法提取光滑的容量增量曲线。将电池容量衰退过程的前部分周期作为训练周期,通过Box-Cox变换将训练周期的ICP和SOH序列变换成线性关系,然后通过线性拟合来实现剩余周期的SOH估计。在Oxford和NASA数据集上进行实验验证,并与机器学习算法进行对比,结果表明所提方法具有较高的估计精度、较短的计算时间和较强的鲁棒性。 展开更多
关键词 健康状态估计 容量增量分析 Box-Cox变换 线性模型
在线阅读 下载PDF
考虑不同充电策略的锂电池健康状态区间估计 被引量:1
14
作者 张孝远 张金浩 杨立新 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期273-284,共12页
评估锂离子电池健康状态(SOH)对于电池使用、维护、管理和经济性评价都有十分重要的意义,但当前锂电池SOH估计方法多针对特定充电策略,采用确定性估计模型,无法反映电池退化过程中的随机性、模糊性等不确定性信息.为此,提出一种适用于... 评估锂离子电池健康状态(SOH)对于电池使用、维护、管理和经济性评价都有十分重要的意义,但当前锂电池SOH估计方法多针对特定充电策略,采用确定性估计模型,无法反映电池退化过程中的随机性、模糊性等不确定性信息.为此,提出一种适用于不同充电策略的锂电池SOH区间估计方法.该方法针对不同充电策略的电池循环充放电数据提取多个特征参数,通过交叉验证自动选择针对特定充电策略的最优特征参数组合.另外,考虑到锂电池全生命期循环次数有限,属于小样本问题,提出集成支持向量回归与分位数回归优势的支持向量分位数回归模型(SVQR)进行锂电池SOH区间估计.选用放电程度较深的锂电池充放电循环数据作为训练集,对SVQR模型进行离线训练,训练好的模型用于不同充电策略下锂电池SOH在线估计.采用具有不同充电策略的数据集验证所提方法,实验结果表明:所提方法适用于不同充电策略,且估计结果优于分位数回归法、分位数回归神经网络法和高斯过程回归法. 展开更多
关键词 锂离子电池 健康状态 区间估计 充电策略 支持向量分位数回归
在线阅读 下载PDF
基于无迹卡尔曼滤波的动力电池状态估计 被引量:5
15
作者 李锦满 李儒欢 +5 位作者 李浩南 李存鑫 邱子桐 郭凯 吴锴 周峻 《电池》 CAS 北大核心 2024年第3期340-343,共4页
准确预测动力电池的荷电状态(SOC)与健康状态(SOH)对电动汽车电池系统的安全运行至关重要。卡尔曼滤波(KF)算法被广泛用于动力电池的状态估计,但非线性误差较大。提出利用无迹卡尔曼滤波(UKF)算法实现对动力电池状态的准确估计。首先,... 准确预测动力电池的荷电状态(SOC)与健康状态(SOH)对电动汽车电池系统的安全运行至关重要。卡尔曼滤波(KF)算法被广泛用于动力电池的状态估计,但非线性误差较大。提出利用无迹卡尔曼滤波(UKF)算法实现对动力电池状态的准确估计。首先,通过分析动力电池实验数据,建立一阶等效电路模型,模型拟合优度达到0.992。随后,加入容量衰退机制模拟锂离子电池老化过程,并对电池进行恒流充电以及随机放电循环,模拟动力电池实际工况。不同初始值下,SOC、SOH估计的均方根误差均小于0.01,且随着循环次数的增加,误差逐渐减小。 展开更多
关键词 锂离子电池 状态估计 等效电路模型 荷电状态(SOC) 健康状态(soh) 无迹卡尔曼滤波(UKF)
在线阅读 下载PDF
联合变分模态分解和长短时记忆网络的锂离子电池健康状态估计 被引量:1
16
作者 陈红霞 丁国荣 +1 位作者 陈贵词 王文波 《电源学报》 CSCD 北大核心 2024年第S01期89-97,共9页
准确估计和预测锂离子电池的健康状态SOH(state-of-health)对新能源领域的发展至关重要,因此提出1种基于变分模态分解VMD(variational mode decomposition)和长短时记忆LSTM(long short-term memory)网络的锂离子电池容量衰减预测模型... 准确估计和预测锂离子电池的健康状态SOH(state-of-health)对新能源领域的发展至关重要,因此提出1种基于变分模态分解VMD(variational mode decomposition)和长短时记忆LSTM(long short-term memory)网络的锂离子电池容量衰减预测模型。首先采用VMD方法将原始电池容量衰减序列分解成比较单一的固有模态分量IMF(intrinsic mode function)序列,然后应用LSTM对分解得到的一系列IMF分量进行训练预测,最后对各IMF分量的预测值进行有效集成得到电池容量衰减序列的最终预测结果。基于美国国家航天局NASA(National Aeronautics and Space Administration)锂离子电池数据集选取的4块电池的放电容量衰减序列进行实验对比分析,结果表明:相较于LSTM、BiLSTM、EMD-LSTM、EMD-BiLSTM及CEEMDAN-LSTM方法,所提方法可以明显降低序列的复杂度,减少各IMF分量的模态混叠现象,具有很高的预测精度,优于其他预测模型,预测的最大平均绝对误差不超过5%,均方根误差和平均绝对百分比误差控制在4%之内。 展开更多
关键词 锂离子电池健康状态估计 变分模态分解 长短时记忆网络
在线阅读 下载PDF
锂电池健康状态估算方法综述 被引量:36
17
作者 张金龙 佟微 +3 位作者 孙叶宁 李端凯 漆汉宏 魏艳君 《电源学报》 CSCD 2017年第2期128-134,共7页
电池管理系统BMS(battery management system)是蓄电池储能技术中不可或缺的环节,而电池健康状态SOH(state of health)估算是BMS的重要功能之一。SOH可以为操作员提供电池实际可用容量及老化状态相关信息,进而为电池控制决策提供参考。... 电池管理系统BMS(battery management system)是蓄电池储能技术中不可或缺的环节,而电池健康状态SOH(state of health)估算是BMS的重要功能之一。SOH可以为操作员提供电池实际可用容量及老化状态相关信息,进而为电池控制决策提供参考。介绍了锂电池的SOH的含义,阐述了导致锂电池老化和可用容量下降的原因,并着重对当前常见的蓄电池SOH估算方法进行了概括和分析,同时对各种SOH估算方法中存在的问题进行了探讨。 展开更多
关键词 电动汽车 锂电池 老化原因 储能 健康状态估算
在线阅读 下载PDF
动力电池组健康状态评价方法的研究 被引量:17
18
作者 颜湘武 郭琪 +2 位作者 杨漾 张合川 王丽娜 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期93-99,共7页
为研究动力电池组内各单体电池的健康状态SOH(State of Health),对电池极化内阻和欧姆内阻特性进行分析.根据电池欧姆内阻提出相对健康状态的评价方法,并结合电池工作时内阻对端电压的影响,采用端电压对电池组内单体电池健康状态进行评... 为研究动力电池组内各单体电池的健康状态SOH(State of Health),对电池极化内阻和欧姆内阻特性进行分析.根据电池欧姆内阻提出相对健康状态的评价方法,并结合电池工作时内阻对端电压的影响,采用端电压对电池组内单体电池健康状态进行评价.最后进行了对比实验验证,实验结果证明了所提方法的准确性和可行性. 展开更多
关键词 动力电池组 极化内阻 欧姆内阻 健康状态
在线阅读 下载PDF
基于最小无偏估计的铅酸蓄电池欧姆内阻模型辨识 被引量:4
19
作者 杨亚丽 李匡成 +1 位作者 孙磊 刘瑾 《电测与仪表》 北大核心 2013年第9期37-40,共4页
欧姆内阻是铅酸蓄电池一个重要参数,它直接影响着蓄电池的健康状态。以电化学原理为基础,分析了直流法测内阻的可行性。通过实验步骤的设置和试验数据采集,采用最小无偏估计算法实现了欧姆内阻与荷电状态、温度的模型关系辨识。经蓄电... 欧姆内阻是铅酸蓄电池一个重要参数,它直接影响着蓄电池的健康状态。以电化学原理为基础,分析了直流法测内阻的可行性。通过实验步骤的设置和试验数据采集,采用最小无偏估计算法实现了欧姆内阻与荷电状态、温度的模型关系辨识。经蓄电池模型联合仿真验证了欧姆内阻模型的准确性。 展开更多
关键词 铅酸蓄电池 荷电状态(SOC) 健康状态(soh) 最小无偏估计算法
在线阅读 下载PDF
锂离子电池健康状态估计方法 被引量:7
20
作者 冯能莲 陈龙科 汤杰 《北京工业大学学报》 CAS CSCD 北大核心 2016年第11期1750-1755,共6页
为研究动力锂离子电池的健康状态(state of health,SOH),根据SOH和荷电状态(state of charge,SOC)的定义以及电池的二阶电阻电容(resistance-capacitance,RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的SOH估计模型.通过分析电... 为研究动力锂离子电池的健康状态(state of health,SOH),根据SOH和荷电状态(state of charge,SOC)的定义以及电池的二阶电阻电容(resistance-capacitance,RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的SOH估计模型.通过分析电池循环寿命测试数据,利用恒流充电阶段电池电压曲线对SOH进行估计,并与试验数据进行了对比,在SOH值衰减至80%之前,SOH估计的相对误差均在±2%范围内,能较好地吻合试验结果.结果表明:所提出的估计方法具有可行性和精确性. 展开更多
关键词 锂离子电池 soh估计 电压曲线
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部