期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Factor graph method for target state estimation in bearing-only sensor network
1
作者 CHEN Zhan FANG Yangwang +1 位作者 ZHANG Ruitao FU Wenxing 《Journal of Systems Engineering and Electronics》 2025年第2期380-396,共17页
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.... For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method. 展开更多
关键词 factor graph cubature information filtering bearing-only sensor network state estimation
在线阅读 下载PDF
Coupled dynamic model of state estimation for hypersonic glide vehicle 被引量:14
2
作者 ZHANG Kai XIONG Jiajun FU Tingting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1284-1292,共9页
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl... Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly. 展开更多
关键词 hypersonic glide vehicle state estimation dynamic model aerodynamic parameter guidance variable
在线阅读 下载PDF
Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects 被引量:11
3
作者 Fang Deng Jie Chen Chen Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期655-665,共11页
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed... An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method. 展开更多
关键词 parameter estimation state estimation unscented Kalman filter (UKF) strong tracking filter wavelet transform.
在线阅读 下载PDF
State estimation in range coordinate using range-only measurements 被引量:3
4
作者 LI Keyi GUO Zhengkun ZHOU Gongjian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期497-510,共14页
In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,positio... In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,position and velocity)are limited to particular cases.For general cases,the range measurements can be utilized by developing a state estimation algorithm in range-Doppler(R-D)plane to obtain accurate range and Doppler estimates.In this paper,a state estimation method based on the proper dynamic model in the R-D plane is proposed.The unscented Kalman filter is employed to handle the strong nonlinearity in the dynamic model.Two filtering initialization methods are derived to extract the initial state estimate and the initial covariance in the R-D plane from the first several range measurements.One is derived based on the well-known two-point differencing method.The other incorporates the correct dynamic model information and uses the unscented transformation method to obtain the initial state estimates and covariance,resulting in a model-based method,which capitalizes the model information to yield better performance.Monte Carlo simulation results are provided to illustrate the effectiveness and superior performance of the proposed state estimation and filter initialization methods. 展开更多
关键词 range-only measurement state estimation filter initialization target tracking unscented Kalman filter(UKF)
在线阅读 下载PDF
State estimation of connected vehicles using a nonlinear ensemble filter
5
作者 刘江 陈华展 +1 位作者 蔡伯根 王剑 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2406-2415,共10页
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d... The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation. 展开更多
关键词 connected vehicles state estimation cooperative positioning nonlinear ensemble filter global navigation satellite system (GNSS) dedicated short range communication (DSRC)
在线阅读 下载PDF
Real-time road traffic states estimation based on kernel-KNN matching of road traffic spatial characteristics 被引量:3
6
作者 XU Dong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2453-2464,共12页
The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial charact... The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy. 展开更多
关键词 road traffic kernel function k nearest neighbor (KNN) state estimation spatial characteristics
在线阅读 下载PDF
Airship aerodynamic model estimation using unscented Kalman filter 被引量:11
7
作者 WASIM Muhammad ALI Ahsan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1318-1329,共12页
An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot... An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem. 展开更多
关键词 AIRSHIP unscented Kalman filter(UKF) extend Kalman filter(EKF) state estimation aerodynamic model estimation
在线阅读 下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
8
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 Minimum model error Weighted least squares method state estimation Invariant embedding method Nonlinear recursive estimate
在线阅读 下载PDF
Study on Optimality of Two-Stage Estimation with ARMA Model Random Bias 被引量:2
9
作者 Zhou Lu(Department of Mathematics, Beijing National University,100875, P. R. China)Wen Xin( 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第2期39-47,共9页
The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Final... The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given. 展开更多
关键词 Kalman filter state estimation Optimal filtering ARMA model Random bias.
在线阅读 下载PDF
Best linear unbiased estimation algorithm with Doppler measurements in spherical coordinates 被引量:5
10
作者 Wei Wang Dan Li Liping Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期128-139,共12页
In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking p... In an active radar-tracking system,the target-motion model is usually modeled in the Cartesian coordinates,while the radar measurement usually is obtained in polar/spherical coordinates.Therefore the target-tracking problem in the Cartesian coordinates becomes a nonlinear state estimation problem.A number of measurement-conversion techniques,which are based on position measurements,are widely used such that the Kalman filter can be used in the Cartesian coordinates.However,they have fundamental limitations to result in filtering performance degradation.In fact,in addition to position measurements,the Doppler measurement or range rate,containing information of target velocity,has the potential capability to improve the tracking performance.A filter is proposed that can use converted Doppler measurements(i.e.the product of the range measurements and Doppler measurements) in the Cartesian coordinates.The novel filter is theoretically optimal in the rule of the best linear unbiased estimation among all linear unbiased filters in the Cartesian coordinates,and is free of the fundamental limitations of the measurement-conversion approach.Based on simulation experiments,an approximate,recursive implementation of the novel filter is compared with those obtained by four state-of-the-art conversion techniques recently.Simulation results demonstrate the effectiveness of the proposed filter. 展开更多
关键词 target tracking radar tracking state estimation converted measurement.
在线阅读 下载PDF
Airborne Target State Estimator 被引量:1
11
作者 Hao Jiankang Zhang Minglian & Wen Chuanyuan (Faculty 305 of Beijing University of Aeronautics & Astronautics Beijing, 100083, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第1期59-70,共12页
A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link i... A Target State Estimator (TSE) for airborne radar system is proposed in this paper. It is very important for fire control system to obtain accurate estimation of the maneuvering target and the TSE becomes a key link in the integrated Flight/Fire Control (IFFC) system. By adopting the Cartesian coordinates and pseudomeasurements ,the result ed TSE has it s advantages in computation.In addition, by employing accurate range and range-rate redundant filter, the range direction estimations obtained in Cartesian filter are greatly improved. The TSE shows its satisfaCtory performance in the Monte Carlo simulation of the IFFC system. 展开更多
关键词 Maneuvering target tracking Target state estimator Kalman filter Integrated flight/fire control.
在线阅读 下载PDF
Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults 被引量:9
12
作者 Fengying Zheng Ziyang Zhen Huajun Gong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期322-337,共16页
The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output... The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output state observer, adaptive fuzzy control, and constraint backstepping technology, a robust fault tolerant control approach is proposed. An output state observer with fuzzy logic systems is developed to estimate unmeasured states, and command filters rather than differentiations of virtual control law are used to solve the computational complexity problem in traditional backstepping. Additionally, a robust term is introduced to offset the fuzzy adaptive estimation error and external disturbance, and an appropriate fault controller structure with matching conditions obtained from fault compensation is proposed. Based on the Lyapunov theory, the designed control program is illustrated to guarantee that all the closed-loop signals of the given system are bounded, and the output errors converge to a small neighborhood of zero. A carrier-based UAV nonlinear longitudinal model is employed to testify the feasibility and validity of the control scheme. The simulation results show that all the controllers can perform at a satisfactory level of reference tracking despite the existence of unknown aerodynamic parameters and actuator faults. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Actuators Aircraft control BACKSTEPPING Control system analysis Control theory Controllers Error compensation Fault tolerance Flight control systems Fuzzy control Fuzzy filters Fuzzy logic state estimation Three term control systems Unmanned aerial vehicles (UAV)
在线阅读 下载PDF
Consecutive tracking for ballistic missile based on bearings-only during boost phase 被引量:6
13
作者 Mei Liu Jianguo Yu +2 位作者 Ling Yang Lu Yao Yaosheng Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期700-707,共8页
This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This ... This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This paper contributes three folds.Firstly,the mathematical model of an MCSRF for multiple passive sensors is derived.Then,minimum entropy based onedimensional optimization search to adaptively adjust the probability of the different filters for real time state estimation is deployed.Finally,the unscented transform(UT) is introduced to resolve the asymmetric state estimation problem.Simulation results show that the proposed algorithm can consecutively track the BM precisely during the boost phase.In comparison with the unscented Kalman filter(UKF) algorithm,the proposed algorithm effectively reduces the tracking position and velocity root mean square(RMS) errors,which will make more sense for early precision interception. 展开更多
关键词 ballistic missile(BM) bearings-only tracking unscented transform(UT) asymmetric state estimation interacting multiple modes boost phase
在线阅读 下载PDF
Optimal observation configuration of UAVs based on angle and range measurements and cooperative target tracking in three-dimensional space 被引量:9
14
作者 SHI Haoran LU Faxing +1 位作者 WANG Hangyu XU Junfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期996-1008,共13页
This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimens... This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimensions. The relative geometry of the UAVs-target will significantly affect the state estimation performance of the target, the cost function based on the Fisher information matrix(FIM) is used to derive the FIM determinant of UAVs' observation in three-dimensional space, and the optimal observation geometric configuration that maximizes the determinant of the FIM is obtained. It is shown that the optimal observation configuration of the UAVs-target is usually not unique, and the optimal observation configuration is proved for two UAVs and three UAVs in three-dimension. The long-range over-the-horizon target tracking is simulated and analyzed based on the analysis of optimal observation configuration for two UAVs. The simulation results show that the theoretical analysis and control algorithm can effectively improve the positioning accuracy of the target. It can provide a helpful reference for the design of over-the-horizon target localization based on UAVs. 展开更多
关键词 target state estimation optimal observation configuration Fisher information matrix(FIM) Cramer-Rao lower bound(CRLB)
在线阅读 下载PDF
Novel algorithm for geomagnetic navigation 被引量:1
15
作者 李明明 卢鸿谦 +1 位作者 尹航 黄显林 《Journal of Central South University》 SCIE EI CAS 2011年第3期791-799,共9页
To solve the highly nonlinear and non-Gaussian recursive state estimation problem in geomagnetic navigation, the unscented particle filter (UPF) was introduced to navigation system. The simulation indicates that geo... To solve the highly nonlinear and non-Gaussian recursive state estimation problem in geomagnetic navigation, the unscented particle filter (UPF) was introduced to navigation system. The simulation indicates that geomagnetic navigation using UPF could complete the position estimation with large initial horizontal position errors. However, this navigation system could only provide the position information. To provide all the kinematics states estimation of aircraft, a novel autonomous navigation algorithm, named unscented particle and Kalman hybrid navigation algorithm (UPKHNA), was proposed for geomagnetic navigation, The UPKHNA used the output of UPF and barometric altimeter as position measurement, and employed the Kahnan filter to estimate the kinematics states of aircraft. The simulation shows that geomagnetic navigation using UPKHNA could provide all the kinematics states estimation of aircraft continuously, and the horizontal positioning performance is better than that only using the UPF. 展开更多
关键词 autonomous navigation geomagnetic navigation unscented particle filter Kalman filter kinematics state estimation
在线阅读 下载PDF
Anomaly detection method based on kinematics model and nonholonomic constraint of vehicle 被引量:1
16
作者 任孝平 蔡自兴 +1 位作者 陈白帆 余伶俐 《Journal of Central South University》 SCIE EI CAS 2011年第4期1128-1132,共5页
A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once ... A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles. 展开更多
关键词 kinematics model nonholonomic constraint error mapping state estimation
在线阅读 下载PDF
Passive target tracking using marginalized particle filter
17
作者 Zhan Ronghui Wang Ling Wan Jianwei Sun Zhongkang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期503-508,共6页
A marginalized particle filtering (MPF) approach is proposed for target tracking under the background of passive measurement. Essentially, the MPF is a combination of particle filtering technique and Kalman filter. ... A marginalized particle filtering (MPF) approach is proposed for target tracking under the background of passive measurement. Essentially, the MPF is a combination of particle filtering technique and Kalman filter. By making full use of marginalization, the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter, and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter. Simulation studies are performed on an illustrative example, and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation. Real data test results also validate the effectiveness of the presented method. 展开更多
关键词 nonlinear filtering passive target tracking particle filter marginalized particle filter state estimation.
在线阅读 下载PDF
Posterior Cramer-Rao lower bounds for bearing-only tracking
18
作者 Guo Lei Tang Bin Liu Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期27-32,共6页
In the state estimation of passive tracking systems, the traditional approximate expression for the Cramero-Rao lower bound (CRLB) does not take two factors into consideration, that is, measurement origin uncertaint... In the state estimation of passive tracking systems, the traditional approximate expression for the Cramero-Rao lower bound (CRLB) does not take two factors into consideration, that is, measurement origin uncertainty aad state noise. Such treatment is only valid in ideal situation but it is not feasible in actual situation. In this article, considering the two factors, the posterior Cramer-Rao lower bound (PCRLB) recursion expression for the error of bearing-only tracking is derived. Then, further analysis is carried out on the PCRLB. According to the final result, there are four main parameters that play a role in the performance of the PCRLB, that is, measurement noise, detection probability, state noise and clutter density, amongst which the first two have greater impact on the performance of the PCRLB than the others. 展开更多
关键词 electronic warfare target passive tracking PCRLB target state estimation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部