在孤岛直流微电网系统中,线路阻抗不匹配会影响各线路的电流分配精度和荷电状态(state of charge,SOC)均衡效果。同时,由于采用下垂控制,虚拟阻抗的存在也会导致直流母线电压下降。针对以上问题,提出了一种基于自适应虚拟阻抗的SOC均衡...在孤岛直流微电网系统中,线路阻抗不匹配会影响各线路的电流分配精度和荷电状态(state of charge,SOC)均衡效果。同时,由于采用下垂控制,虚拟阻抗的存在也会导致直流母线电压下降。针对以上问题,提出了一种基于自适应虚拟阻抗的SOC均衡控制策略。该策略考虑了不同容量的分布式储能单元(distributed energy storage units,DESUs),并设计了交互DESUs邻居单元SOC均衡差异信息的收敛因子,以加快SOC均衡速度。利用结合多种系统状态信息的状态因子,通过单补偿环节即可实现输出电流的精准分配以及母线电压的恢复。使用改进后的动态平均一致性算法获取系统全局平均状态信息估计值。最后,在Matlab/Simulink仿真软件中搭建了4种工况模型,验证了所提控制策略的有效性和可靠性。展开更多
针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂...针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。展开更多
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)...针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。展开更多
为解决传统的下垂控制存在均分精度不足、无法合理分配电流、下垂系数的取值无限制以及电池荷电状态(state of charge, SOC)均衡速度慢的问题,提出一种基于改进下垂系数的SOC均衡下垂控制。首先,分析了传统幂指数形式下垂控制的缺陷,提...为解决传统的下垂控制存在均分精度不足、无法合理分配电流、下垂系数的取值无限制以及电池荷电状态(state of charge, SOC)均衡速度慢的问题,提出一种基于改进下垂系数的SOC均衡下垂控制。首先,分析了传统幂指数形式下垂控制的缺陷,提出幂指数嵌套反正切函数的下垂系数形式,以此来限制下垂系数的取值进而提高控制系统的稳定性与可靠性。随后,针对SOC均衡速度较慢的问题,提出在下垂系数中引进增速因子Q来提升均衡速度,并分析了不同Q值对下垂曲线的影响。最后,搭建仿真模型对改进方法进行对比验证。仿真结果表明所提改进的SOC均衡速度在SOC差距较小时有较大提升。在SOC均衡的过程中,下垂系数的变化更平滑,母线电压在SOC差距较大时也不会发生较大振荡。展开更多
文摘在孤岛直流微电网系统中,线路阻抗不匹配会影响各线路的电流分配精度和荷电状态(state of charge,SOC)均衡效果。同时,由于采用下垂控制,虚拟阻抗的存在也会导致直流母线电压下降。针对以上问题,提出了一种基于自适应虚拟阻抗的SOC均衡控制策略。该策略考虑了不同容量的分布式储能单元(distributed energy storage units,DESUs),并设计了交互DESUs邻居单元SOC均衡差异信息的收敛因子,以加快SOC均衡速度。利用结合多种系统状态信息的状态因子,通过单补偿环节即可实现输出电流的精准分配以及母线电压的恢复。使用改进后的动态平均一致性算法获取系统全局平均状态信息估计值。最后,在Matlab/Simulink仿真软件中搭建了4种工况模型,验证了所提控制策略的有效性和可靠性。
文摘针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。
文摘针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。
文摘为解决传统的下垂控制存在均分精度不足、无法合理分配电流、下垂系数的取值无限制以及电池荷电状态(state of charge, SOC)均衡速度慢的问题,提出一种基于改进下垂系数的SOC均衡下垂控制。首先,分析了传统幂指数形式下垂控制的缺陷,提出幂指数嵌套反正切函数的下垂系数形式,以此来限制下垂系数的取值进而提高控制系统的稳定性与可靠性。随后,针对SOC均衡速度较慢的问题,提出在下垂系数中引进增速因子Q来提升均衡速度,并分析了不同Q值对下垂曲线的影响。最后,搭建仿真模型对改进方法进行对比验证。仿真结果表明所提改进的SOC均衡速度在SOC差距较小时有较大提升。在SOC均衡的过程中,下垂系数的变化更平滑,母线电压在SOC差距较大时也不会发生较大振荡。