The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key ...The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.Th...In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.The effect of the azimuthal angle of blade position relative to wind direction on the self-starting capability was discussed based on the results of flow visualization.The torque and centripetal force of the rotor when the self-starting behavior starts were roughly calculated with the flow visualization results of the rotor.It is suggested that there exists the condition of wind speed and configuration of the blade position of the rotor at the rest of rotor to the reach to situational rotation number.展开更多
基金Project(2018XK2301) supported by the Change-Zhu-Tan National Independent Innavation Demonstration Zone Special Program,China。
文摘The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.
基金supported in part by International Platform for Dryland Research and Education (IPDRE),Tottori University
文摘In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.The effect of the azimuthal angle of blade position relative to wind direction on the self-starting capability was discussed based on the results of flow visualization.The torque and centripetal force of the rotor when the self-starting behavior starts were roughly calculated with the flow visualization results of the rotor.It is suggested that there exists the condition of wind speed and configuration of the blade position of the rotor at the rest of rotor to the reach to situational rotation number.