A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was anal...A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.展开更多
针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维...针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维稀疏模型,然后将最小角回归算法用于稀疏系统辨识,并提出绝对角度停止准则,使算法经过少量的迭代即可获得模型的稀疏参数估计,并同时获得有效的时滞和阶次估计。结合辨识得到的受控自回归模型,引入一种基于指定相位点频率和增益的比例-积分-微分(proportional integral derivative,PID)控制器。数值仿真和平衡机器人的姿态控制仿真表明,该稀疏辨识算法在低数据量下具有较高的辨识精度,建立的模型具有较好的泛化性能,控制器具有良好的控制效果。展开更多
基金Sponsored by the NSFC General Project (51177135)the Key Project of Natural Science Foundation of Shaanxi Province (2011GZ013)
文摘A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a brushless wound-field synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.
文摘针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维稀疏模型,然后将最小角回归算法用于稀疏系统辨识,并提出绝对角度停止准则,使算法经过少量的迭代即可获得模型的稀疏参数估计,并同时获得有效的时滞和阶次估计。结合辨识得到的受控自回归模型,引入一种基于指定相位点频率和增益的比例-积分-微分(proportional integral derivative,PID)控制器。数值仿真和平衡机器人的姿态控制仿真表明,该稀疏辨识算法在低数据量下具有较高的辨识精度,建立的模型具有较好的泛化性能,控制器具有良好的控制效果。