Increasing velocity combined with decreasing mass of modern highspeed trains poses a question about the influence of strong crosswinds on its aerodynamics. Strong crosswinds may affect the running stability of high sp...Increasing velocity combined with decreasing mass of modern highspeed trains poses a question about the influence of strong crosswinds on its aerodynamics. Strong crosswinds may affect the running stability of high speed trains via the amplified aerodynamic forces and moments. In this study, a simulation of turbulent crosswind flows over the leading and end cars of ICE2 highspeed train was performed at different yaw angles in static and moving ground case scenarios. Since the train aerodynamic problems are closely associated with the flows occurring around train, the flow around the train was considered as incompressible and was obtained by solving the incom pressible form of the unsteady Reynoldsaveraged Navier Stokes (RANS) equations combined with the realizable kepsilon turbulence model. Important aerodynamic coef ficients such as the side force and rolling moment coeffi cients were calculated for yaw angles ranging from 30° to 60° and compared with the results obtained from wind tunnel test. The dependence of the flow structure on yaw angle was also presented. The nature of the flow field and its structure depicted by contours of velocity magnitude and streamline patterns along the train's crosssection were presented for different yaw angles. In addition, the pressure coefficient around the circumference of the train at dif ferent locations along its length was computed for yaw angles of 30° and 60°, The computed aerodynamic coef ficient outcomes using the realizable kepsilon turbulencemodel were in good agreement with the wind tunnel data. Both the side force coefficient and rolling moment coeffi cients increase steadily with yaw angle till about 50° before starting to exhibit an asymptotic behavior. Contours of velocity magnitude were also computed at different cross sections of the train along its length for different yaw angles. The result showed that magnitude of rotating vortex in the lee ward side increased with increasing yaw angle, which leads to the creation of a lowpressure region in the lee ward side of the train causing high side force and roll moment. Generally, this study shows that unsteady CFD RANS methods combined with an appropriate turbulence model can present an important means of assessing the crucial aerodynamic forces and moments of a highspeed train under strong crosswind conditions.展开更多
The friction factor is a crucial parameter in calculating frictional pressure losses. However, it is a decisive challenge to estimate, especially for turbulent flow of non-Newtonian fluids in pipes. The objective of t...The friction factor is a crucial parameter in calculating frictional pressure losses. However, it is a decisive challenge to estimate, especially for turbulent flow of non-Newtonian fluids in pipes. The objective of this paper is to examine the validity of friction factor correla- tions adopting a new informative-based approach, the Akaike information criterion (AIC) along with the coeffi- cient of determination (R2). Over a wide range of measured data, the results show that each model is accurate when it is examined against a specific dataset while the E1-Emam et al. (Oil Gas J 101:74-83, 2003) model proves its supe- riority. In addition to its simple and explicit form, it covers a wide range of flow behavior indices and generalized Reynolds numbers. It is also shown that the traditional belief that a high R2 means a better model may be mis- leading. AIC overcomes the shortcomings of R2 as a trade between the complexity of the model and its accuracy not only to find a best approximating model but also to develop statistical inference based on the data. The authors present AIC to initiate an innovative strategy to help alleviate several challenges faced by the professionals in the oil and gas industry. Finally, a detailed discussion and models' ranking according to AIC and R2 is presented showing the numerous advantages of AIC.Keywords Friction factor - Pipeline Information theory Non-Newtonian Turbulent展开更多
This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial eq...This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.展开更多
基于DSP平台,针对2D-IDCT运算复杂的特点,对8×8整型离散余弦变换(DCT)正反变换算法进行优化,在运算精度上提出改进,得到最佳参数参与运算,运算结果符合IEEE Standard 1180—1990标准要求。在此标准基础上利用DSP平台特性,在实现上...基于DSP平台,针对2D-IDCT运算复杂的特点,对8×8整型离散余弦变换(DCT)正反变换算法进行优化,在运算精度上提出改进,得到最佳参数参与运算,运算结果符合IEEE Standard 1180—1990标准要求。在此标准基础上利用DSP平台特性,在实现上进行多级优化并采用并行流水线结构,使一次IDCT计算耗时在140个周期内。展开更多
为研究湍流积分尺度对高层建筑风荷载大小和分布的影响,研究其合理取值,基于大涡模拟开展了B类地貌不同湍流积分尺度下CAARC(commonwealth advisory aeronautical research council)标准高层建筑模型绕流模拟,并将模拟结果与风洞试验进...为研究湍流积分尺度对高层建筑风荷载大小和分布的影响,研究其合理取值,基于大涡模拟开展了B类地貌不同湍流积分尺度下CAARC(commonwealth advisory aeronautical research council)标准高层建筑模型绕流模拟,并将模拟结果与风洞试验进行了比较.研究结果表明:大涡模拟能较好地反映高层建筑周围风场绕流特性和表面风压分布.随着湍流积分尺度的增大,平均运动的变形率向湍流脉动输入能量,以致平均风速降低、湍流强度增大;侧面风压脉动性降低15%、分离流附着提前出现;基底扭矩谱和弯矩谱的峰值及高频段幅值均减小;层斯托罗哈数在0.4倍建筑高度以下基本相同,随高度的增加其值下降20%~30%;层平均阻力系数下降5%~10%;迎风面风压系数平均值下降2%~5%,侧面和背面下降12%~17%.湍流积分尺度对迎风面和侧面上风向的风压水平相关性、层升力和0.8倍建筑高度以下的层阻力相关性的影响可以忽略.随湍流积分尺度的增大,风压水平相关系数增大,背风面增大5%~10%,侧面下风向增大15%~25%,0.8倍建筑高度以上层阻力相关性系数增大25%~50%.B类地貌湍流积分尺度的调整系数为0.4时,计算得到的风荷载与试验结果趋于一致.展开更多
文摘Increasing velocity combined with decreasing mass of modern highspeed trains poses a question about the influence of strong crosswinds on its aerodynamics. Strong crosswinds may affect the running stability of high speed trains via the amplified aerodynamic forces and moments. In this study, a simulation of turbulent crosswind flows over the leading and end cars of ICE2 highspeed train was performed at different yaw angles in static and moving ground case scenarios. Since the train aerodynamic problems are closely associated with the flows occurring around train, the flow around the train was considered as incompressible and was obtained by solving the incom pressible form of the unsteady Reynoldsaveraged Navier Stokes (RANS) equations combined with the realizable kepsilon turbulence model. Important aerodynamic coef ficients such as the side force and rolling moment coeffi cients were calculated for yaw angles ranging from 30° to 60° and compared with the results obtained from wind tunnel test. The dependence of the flow structure on yaw angle was also presented. The nature of the flow field and its structure depicted by contours of velocity magnitude and streamline patterns along the train's crosssection were presented for different yaw angles. In addition, the pressure coefficient around the circumference of the train at dif ferent locations along its length was computed for yaw angles of 30° and 60°, The computed aerodynamic coef ficient outcomes using the realizable kepsilon turbulencemodel were in good agreement with the wind tunnel data. Both the side force coefficient and rolling moment coeffi cients increase steadily with yaw angle till about 50° before starting to exhibit an asymptotic behavior. Contours of velocity magnitude were also computed at different cross sections of the train along its length for different yaw angles. The result showed that magnitude of rotating vortex in the lee ward side increased with increasing yaw angle, which leads to the creation of a lowpressure region in the lee ward side of the train causing high side force and roll moment. Generally, this study shows that unsteady CFD RANS methods combined with an appropriate turbulence model can present an important means of assessing the crucial aerodynamic forces and moments of a highspeed train under strong crosswind conditions.
文摘The friction factor is a crucial parameter in calculating frictional pressure losses. However, it is a decisive challenge to estimate, especially for turbulent flow of non-Newtonian fluids in pipes. The objective of this paper is to examine the validity of friction factor correla- tions adopting a new informative-based approach, the Akaike information criterion (AIC) along with the coeffi- cient of determination (R2). Over a wide range of measured data, the results show that each model is accurate when it is examined against a specific dataset while the E1-Emam et al. (Oil Gas J 101:74-83, 2003) model proves its supe- riority. In addition to its simple and explicit form, it covers a wide range of flow behavior indices and generalized Reynolds numbers. It is also shown that the traditional belief that a high R2 means a better model may be mis- leading. AIC overcomes the shortcomings of R2 as a trade between the complexity of the model and its accuracy not only to find a best approximating model but also to develop statistical inference based on the data. The authors present AIC to initiate an innovative strategy to help alleviate several challenges faced by the professionals in the oil and gas industry. Finally, a detailed discussion and models' ranking according to AIC and R2 is presented showing the numerous advantages of AIC.Keywords Friction factor - Pipeline Information theory Non-Newtonian Turbulent
基金supported by the National Natural Science Foundation of China (Grant No 20673050)
文摘This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.
文摘基于DSP平台,针对2D-IDCT运算复杂的特点,对8×8整型离散余弦变换(DCT)正反变换算法进行优化,在运算精度上提出改进,得到最佳参数参与运算,运算结果符合IEEE Standard 1180—1990标准要求。在此标准基础上利用DSP平台特性,在实现上进行多级优化并采用并行流水线结构,使一次IDCT计算耗时在140个周期内。
文摘为研究湍流积分尺度对高层建筑风荷载大小和分布的影响,研究其合理取值,基于大涡模拟开展了B类地貌不同湍流积分尺度下CAARC(commonwealth advisory aeronautical research council)标准高层建筑模型绕流模拟,并将模拟结果与风洞试验进行了比较.研究结果表明:大涡模拟能较好地反映高层建筑周围风场绕流特性和表面风压分布.随着湍流积分尺度的增大,平均运动的变形率向湍流脉动输入能量,以致平均风速降低、湍流强度增大;侧面风压脉动性降低15%、分离流附着提前出现;基底扭矩谱和弯矩谱的峰值及高频段幅值均减小;层斯托罗哈数在0.4倍建筑高度以下基本相同,随高度的增加其值下降20%~30%;层平均阻力系数下降5%~10%;迎风面风压系数平均值下降2%~5%,侧面和背面下降12%~17%.湍流积分尺度对迎风面和侧面上风向的风压水平相关性、层升力和0.8倍建筑高度以下的层阻力相关性的影响可以忽略.随湍流积分尺度的增大,风压水平相关系数增大,背风面增大5%~10%,侧面下风向增大15%~25%,0.8倍建筑高度以上层阻力相关性系数增大25%~50%.B类地貌湍流积分尺度的调整系数为0.4时,计算得到的风荷载与试验结果趋于一致.