On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in f...On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.展开更多
The recent discovery of field emission devices based on one-dimensional nanostructures has attracted much interest in emerging applications on next-generation flat panel displays,molecule-based sensors,and so forth.To...The recent discovery of field emission devices based on one-dimensional nanostructures has attracted much interest in emerging applications on next-generation flat panel displays,molecule-based sensors,and so forth.To achieve a comprehensive understanding of surface potentials at the nano-emitters during the tunneling process,in this study we systematically investigated the image potentials of single-walled boron nitride nanotubes with different edges,diameters and lengths in the frame of a composite first-principles calculation.The image potentials of zigzag single-walled boron nitride nanotubes are found to be dependent on the non-equivalent sides.Only the image potentials of isolated armchair single-walled boron nitride nanotube can be well fitted with the image potential of an ideal metal sphere of a size comparable to the tube diameter.On the contrary,the image potentials of zigzag and grounded armchair single-walled boron nitride nanotubes exhibit a strong length-dependence characteristic and are significantly different from that of an ideal metal sphere,which originates from the significant axial symmetry breaking of induced charge at the tip for the long tube.The correlation between the testing electron and electronic structure of single-walled boron nitride nanotube has also been discussed.展开更多
The Jurassic coal-measure source rocks in the Junggar Basin have drawn considerable attention in recent years. In our hydrocarbon thermal simulation experiments of these rocks, we found that the dark mudstone evaluate...The Jurassic coal-measure source rocks in the Junggar Basin have drawn considerable attention in recent years. In our hydrocarbon thermal simulation experiments of these rocks, we found that the dark mudstone evaluated as good source rock, had a much lower hydrocarbon generation capacity than the coal and carbonaceous mudstone, evaluated as poor source rock. Based on this background, we performed Fourier transform infrared spectroscopy(FTIR) and combined the results of semi-open thermal simulation experiments to explore the association between the molecular structure and hydrocarbon production capacity, with the aim of obtaining a new understanding of hydrocarbon potential of Jurassic coal-measure source rocks from the perspective of molecular structure. The results indicate that coals exhibit lower condensation of aromatic structures and higher relative abundance of aliphatic structures with a higher degree of branched chaining than mudstones and carbonaceous mudstones. Apparent aromaticity(f_a), aromatic abundance parameter I, and degree of condensation(DOC) are negatively correlated with organic matter abundance. The aliphatic structural parameter H demonstrates a substantial positive correlation with organic matter abundance. Furthermore, aliphatic relative abundance factor A is associated with the type of organic matter;the better is the type of the organic matter, the larger is the A value. The combination of the molecular structures with the thermal simulation results shows that the aliphatic hydrogen enrichment of selected carbonaceous mudstone is similar to that of coal. However, the relative abundance of the aliphatic group of it is high, and the DOC of the aromatic structure is low, making the hydrocarbon generation base stronger and easier to crack. Thus, the hydrocarbon generation capacity of carbonaceous mudstone is slightly higher than that of coal. Mudstone has low H and I values, and the DOC is high, indicating that its hydrocarbon base is low, so it has low hydrocarbon generation capacity. Therefore, the molecular structure is closely associated with the hydrocarbon potential of coal-measure source rocks. When evaluating the qualities of coal-measure source rocks, the influence of molecular structure on these rocks should be considered.展开更多
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the dis...Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the distribution areas of Moso bamboo(Phyllostachys edulis)in China to explore the effects of bamboo invasion on forest structural attributes and diameter–height allometries by comparing paired plots of bamboo,mixed bamboo-tree,and non-bamboo forests along the transects.We found that bamboo invasion decreased the mean and maximum diameter at breast height,maximum height,and total basal area,but increased the mean height,stem density,and scaling exponent for stands.Bamboo also had a higher scaling exponent than tree,particularly in mixed forests,suggesting a greater allocation of biomass to height growth.As invasion intensity increased,bamboo allometry became more plastic and decreased significantly,whereas tree allometry was indirectly promoted by increasing stem density.Additionally,a humid climate may favour the scaling exponents for both bamboo and tree,with only minor contributions from topsoil moisture and nitrogen content.The inherent superiority of diameter–height allometry allows bamboo to outcompete tree and contributes to its invasive success.Our findings provide a theoretical basis for understanding the causes and consequences of bamboo invasion.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P...Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
AlphaFold[1]has turned everyone into a structural biologist.No need for knowledge of Fourier transforms or spectral density,driven by artificial intelligence(AI),all one needs to do is enter the primary structure of a...AlphaFold[1]has turned everyone into a structural biologist.No need for knowledge of Fourier transforms or spectral density,driven by artificial intelligence(AI),all one needs to do is enter the primary structure of a folded protein,and out pops a tertiary structure nearly as good as one from an experiment-based structure.展开更多
Warm-wet climatic conditions are widely regarded as conducive to remarkable tree growth,alleviating climatic pressures.However,the notable decline in tree growth observed in the southern edge of boreal forests has hei...Warm-wet climatic conditions are widely regarded as conducive to remarkable tree growth,alleviating climatic pressures.However,the notable decline in tree growth observed in the southern edge of boreal forests has heightened concerns over the spatial-temporal dynamics of forest decline.Currently,attaining a comprehensive grasp of the underlying patterns and their propelling factors remains a formidable challenge.We collected tree ring samples from a network of 50 sites across the Greater Xing'an Mountains.These samples were subsequently grouped into two distinct clusters,designated as Groups A and B.The percentage change of growth(GC,%)and the proportion of declining sites were utilized to assess forest decline.The decline in tree growth within Larix gmelinii forests exhibits significant regional variation,accompanied by temporal fluctuations even within a given region.Group A exhibited a pronounced increase in frequency(59.26%)of occurrences and encountered more severe declines(21.65%)in tree growth subsequent to the 1990s,contrasting sharply with Group B,which observed lower frequencies(20.00%)and relatively less severe declines(21.02%)prior to the 1980s.The primary impetus underlying the opposite radial growth increments observed in Larix gmelinii trees from the interplay between their differential response to temperatures and wetter climatic conditions,which is significantly influenced by varying stand densities.In cold-dry conditions,low-density forests may experience soil water freezing,exacerbating drought conditions and thereby inhibiting tree growth,in Group B.Trees growth in high-density stands is restrained by warm-wet conditions,in Group A.These results provide new insights into the variability at the southern edge of the boreal forest biome with different responses to density and climate.展开更多
Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s...Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.展开更多
Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using convent...Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using conventional biophysical techniques,such as Xray crystallography and solution nuclear magnetic resonance(NMR),presents challenges due to the inherent flexibility and susceptibility to degradation of RNA.In recent years,solid-state NMR(SSNMR)has rapidly emerged as a promising alternative technique for characterizing RNA structure and dynamics.SSNMR has several distinct advantages,including flexibility in sample states,the ability to capture dynamic features of RNA in solid form,and suitability to character RNAs in various sizes.Recent decade witnessed the growth of ^(1)H-detected SSNMR methods on RNA,which targeted elucidating RNA topology and base pair dynamics in solid state.They have been applied to determine the topology of RNA segment in human immunodeficiency virus(HIV)genome and the base pair dynamics of riboswitch RNA.These advancements have expanded the utility of SSNMR techniques within the RNA research field.This review provides a comprehensive discussion of recent progress in ^(1)H-detected SSNMR investigations into RNA structure and dynamics.We focus on the established ^(1)H-detected SSNMR methods,sample preparation protocols,and the implementation of rapid data acquisition approaches.展开更多
In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the p...In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the precipitation of insoluble products covered cathode surface and the slow reaction kinetics.Therefore,a method using a simple one-step hydrothermal preparation and oxalic acid to regulate oxygen vacancies has been reported.A high starting capacity(400 mAh g^(-1))can be achieved by Ov-V2O5,and it is capable of undergoing 200 cycles at 0.4 A g^(-1),with a termination discharge capacity of103 mAh g^(-1).Mechanism analysis demonstrated that metastable structures(AlxV2O5and HxV2O5)were constructed through the insertion of Al^(3+)/H^(+)during discharging,which existed in the lattice intercalation with V2O5.The incorporation of oxygen vacancies lowers the reaction energy barrier while improving the ion transport efficiency.In addition,the metastable structure allows the electrostatic interaction between Al3+and the main backbone to establish protection and optimize the transport channel.In parallel,this work exploits ex-situ characterization and DFT to obtain a profound insight into the instrumental effect of oxygen vacancies in the construction of metastable structures during in-situ electrochemical activation,with a view to better understanding the mechanism of the synergistic participation of Al3+and H+in the reaction.This work not only reports a method for cathode materials to modulate oxygen vacancies,but also lays the foundation for a deeper understanding of the metastable structure of vanadium oxides.展开更多
The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several...The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.展开更多
High-mobility semiconductor nanotubes have demonstrated great potential for applications in high-speed transistors,single-charge detection,and memory devices.Here we systematically investigated the electronic properti...High-mobility semiconductor nanotubes have demonstrated great potential for applications in high-speed transistors,single-charge detection,and memory devices.Here we systematically investigated the electronic properties of single-walled boron antimonide(BSb)nanotubes using first-principles calculations.We observed that rolling the hexagonal boron antimonide monolayer into armchair(ANT)and zigzag(ZNT)nanotubes induces compression and wrinkling effects,significantly modifying the band structures and carrier mobilities through band folding andπ^(*)-σ^(*)hybridization.As the chiral index increases,the band gap and carrier mobility of ANTs decrease monotonically,where electron mobility consistently exceeds hole mobility.In contrast,ZNTs exhibit a more complex trend:the band gap first increases and then decreases,and the carrier mobility displays oscillatory behavior.In particular,both ANTs and ZNTs could exhibit significantly higher carrier mobilities compared to hexagonal monolayer and zinc-blende BSb,reaching 10^(-3)-10^(-7) cm^(-2)·V^(-1)·s^(-1).Our findings highlight strong curvature-induced modifications in the electronic properties of single-walled BSb nanotubes,demonstrating the latter as a promising candidate for high-performance electronic devices.展开更多
Novel ordered intermetallic compounds have stimulated much interest.Ru–Al alloys are a prominent class of hightemperature structural materials,but the experimentally reported crystal structure of the intermetallic Ru...Novel ordered intermetallic compounds have stimulated much interest.Ru–Al alloys are a prominent class of hightemperature structural materials,but the experimentally reported crystal structure of the intermetallic Ru_(2)Al_(5) phase remains elusive and debatable.To resolve this controversy,we extensively explored the crystal structures of Ru_(2)Al_(5) using first-principles calculations combined with crystal structure prediction technique.Among the calculated x-ray diffraction patterns and lattice parameters of five candidate Ru2Al5structures,those of the orthorhombic Pmmn structure best aligned with recent experimental results.The structural stabilities of the five Ru_(2)Al_(5)structures were confirmed through formation energy,elastic constants,and phonon spectrum calculations.We also comprehensively analyzed the mechanical and electronic properties of the five candidates.This work can guide the exploration of novel ordered intermetallic compounds in Ru–Al alloys.展开更多
Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is p...Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO_(2).The formation and growth of recrystallized grains were initially investigated.It was demonstrated that recrystallization kinetics adhere to the Kolmogorov–Johnson–Mehl–Avrami(KJMA)equation,and that recrystallization represents a process of free-energy reduction.Subsequently,the microstructural evolution in UO_(2) was analyzed as the burn up increased.Gas bubbles acted as additional nucleation sites,thereby augmenting the recrystallization kinetics,whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries.The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings.Furthermore,the influence of grain size on microstructure evolution was investigated.Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures.展开更多
The high activity and stability of intermetallic PtCo nanocatalysts toward oxygen reduction reaction make them a top candidate as low-Pt cathode catalysts in proton exchange membrane fuel cells(PEMFCs).However,forming...The high activity and stability of intermetallic PtCo nanocatalysts toward oxygen reduction reaction make them a top candidate as low-Pt cathode catalysts in proton exchange membrane fuel cells(PEMFCs).However,forming intermetallic structures typically requires high-temperature annealing,posing a challenge for achieving well-size control and highly ordered structures.Here we report the design and synthesis of bimetallic co re@shell structured precursors for affording high-performance intermetallic PtCo catalysts.The fabrication of the core@shell precursor involves using a molecular ligand containing both sulfur and oxygen donors to selectively bind with Pt colloidal nanoparticles as the core and chelate Co ions as the shell.During high-temperature annealing,the ligand transforms into carbon coatings around alloy nanoparticles,preventing particle sintering;meanwhile,Co ions in the shell can easily diffuse into the Pt core,which helps to increase the thermodynamic driving force for forming intermetallic structures.These benefits enable us to obtain the catalyst with finely dispersed nanoparticles(~3.5 nm)and a high ordering degree of 72%.With 0.1 mgPt/cm^(2)cathode loading,the catalyst delivers superior performance and durability in PEMFCs,showing an initial mass activity of 0.56 A/mgPt,an initial power density of 1.05 W/cm^(2)at 0.67 V(H_(2)-air),and a voltage loss of 26 mV at 0.8 A/cm^(2)after the accelerated durability test.展开更多
基金This research is related to the project GO NEWTON“Agroforestry Network in Tuscany”,financed by the Tuscany Region through the Measure 16.2 of Rural Development Plan 2014-2020 to promote agroforestry systems by spreading knowledge to farmers and promoting innovation in the Tuscan territory.
文摘On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.12004083 and 51972069)the Science and Technology Projects in Guangzhou(Grant Nos.202102020350 and 202102010470)+7 种基金the National Key R&D Program of China(Grant No.2016YFB0200800)the Opening Project of Joint Laboratory for Planetary Science and Supercomputing(Grant No.CSYYGS-QT-2024-14)the Key-Area Research and Development Program of Guangdong Province(Grant No.2019B030330001)the College Students Innovation and Entrepreneurship Training Program of Guangdong Province(Grant No.S202311078133)Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(Grant No.202255464)the National Supercomputer Center in Guangzhouthe National Supercomputing Center in Chengduthe Network Center of Guangzhou University。
文摘The recent discovery of field emission devices based on one-dimensional nanostructures has attracted much interest in emerging applications on next-generation flat panel displays,molecule-based sensors,and so forth.To achieve a comprehensive understanding of surface potentials at the nano-emitters during the tunneling process,in this study we systematically investigated the image potentials of single-walled boron nitride nanotubes with different edges,diameters and lengths in the frame of a composite first-principles calculation.The image potentials of zigzag single-walled boron nitride nanotubes are found to be dependent on the non-equivalent sides.Only the image potentials of isolated armchair single-walled boron nitride nanotube can be well fitted with the image potential of an ideal metal sphere of a size comparable to the tube diameter.On the contrary,the image potentials of zigzag and grounded armchair single-walled boron nitride nanotubes exhibit a strong length-dependence characteristic and are significantly different from that of an ideal metal sphere,which originates from the significant axial symmetry breaking of induced charge at the tip for the long tube.The correlation between the testing electron and electronic structure of single-walled boron nitride nanotube has also been discussed.
基金co-funded by the National Natural Science Foundation of China (Grant Nos. 42372160, 42072172)Shandong Province Natural Science Fund for Distinguished Young Scholars (Grant No. JQ201311)the Graduate Scientific and Technological Innovation Project financially supported by Shandong University of Science and Technology (Grant No. SDKDYC190313)。
文摘The Jurassic coal-measure source rocks in the Junggar Basin have drawn considerable attention in recent years. In our hydrocarbon thermal simulation experiments of these rocks, we found that the dark mudstone evaluated as good source rock, had a much lower hydrocarbon generation capacity than the coal and carbonaceous mudstone, evaluated as poor source rock. Based on this background, we performed Fourier transform infrared spectroscopy(FTIR) and combined the results of semi-open thermal simulation experiments to explore the association between the molecular structure and hydrocarbon production capacity, with the aim of obtaining a new understanding of hydrocarbon potential of Jurassic coal-measure source rocks from the perspective of molecular structure. The results indicate that coals exhibit lower condensation of aromatic structures and higher relative abundance of aliphatic structures with a higher degree of branched chaining than mudstones and carbonaceous mudstones. Apparent aromaticity(f_a), aromatic abundance parameter I, and degree of condensation(DOC) are negatively correlated with organic matter abundance. The aliphatic structural parameter H demonstrates a substantial positive correlation with organic matter abundance. Furthermore, aliphatic relative abundance factor A is associated with the type of organic matter;the better is the type of the organic matter, the larger is the A value. The combination of the molecular structures with the thermal simulation results shows that the aliphatic hydrogen enrichment of selected carbonaceous mudstone is similar to that of coal. However, the relative abundance of the aliphatic group of it is high, and the DOC of the aromatic structure is low, making the hydrocarbon generation base stronger and easier to crack. Thus, the hydrocarbon generation capacity of carbonaceous mudstone is slightly higher than that of coal. Mudstone has low H and I values, and the DOC is high, indicating that its hydrocarbon base is low, so it has low hydrocarbon generation capacity. Therefore, the molecular structure is closely associated with the hydrocarbon potential of coal-measure source rocks. When evaluating the qualities of coal-measure source rocks, the influence of molecular structure on these rocks should be considered.
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
基金supported by the National Natural Science Foundation of China(No.31988102)Yunnan Province Major Program for Basic Research Project(No.202101BC070002)+1 种基金Yunnan Province Science and Technology Talents and Platform Program(No.202305AA160014)Yunnan Province Key Research and Development Program of China(No.202303AC100009)。
文摘Forest structure is fundamental in determining ecosystem function,yet the impact of bamboo invasion on these structural characteristics remains unclear.We investigated 219 invasion transects at 41 sites across the distribution areas of Moso bamboo(Phyllostachys edulis)in China to explore the effects of bamboo invasion on forest structural attributes and diameter–height allometries by comparing paired plots of bamboo,mixed bamboo-tree,and non-bamboo forests along the transects.We found that bamboo invasion decreased the mean and maximum diameter at breast height,maximum height,and total basal area,but increased the mean height,stem density,and scaling exponent for stands.Bamboo also had a higher scaling exponent than tree,particularly in mixed forests,suggesting a greater allocation of biomass to height growth.As invasion intensity increased,bamboo allometry became more plastic and decreased significantly,whereas tree allometry was indirectly promoted by increasing stem density.Additionally,a humid climate may favour the scaling exponents for both bamboo and tree,with only minor contributions from topsoil moisture and nitrogen content.The inherent superiority of diameter–height allometry allows bamboo to outcompete tree and contributes to its invasive success.Our findings provide a theoretical basis for understanding the causes and consequences of bamboo invasion.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金funding from National Science Foundation of China(52202337 and 22178015)the Young Taishan Scholars Program of Shandong Province(tsqn202211082)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB051)Independent Innovation Research Project of China University of Petroleum(East China)(22CX06023A).
文摘Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金supported by the U.S.National Natural Science Foundation(CHE-2203505 and MCB-2335137).
文摘AlphaFold[1]has turned everyone into a structural biologist.No need for knowledge of Fourier transforms or spectral density,driven by artificial intelligence(AI),all one needs to do is enter the primary structure of a folded protein,and out pops a tertiary structure nearly as good as one from an experiment-based structure.
基金National Nature Science Foundation of China(No.32371871)。
文摘Warm-wet climatic conditions are widely regarded as conducive to remarkable tree growth,alleviating climatic pressures.However,the notable decline in tree growth observed in the southern edge of boreal forests has heightened concerns over the spatial-temporal dynamics of forest decline.Currently,attaining a comprehensive grasp of the underlying patterns and their propelling factors remains a formidable challenge.We collected tree ring samples from a network of 50 sites across the Greater Xing'an Mountains.These samples were subsequently grouped into two distinct clusters,designated as Groups A and B.The percentage change of growth(GC,%)and the proportion of declining sites were utilized to assess forest decline.The decline in tree growth within Larix gmelinii forests exhibits significant regional variation,accompanied by temporal fluctuations even within a given region.Group A exhibited a pronounced increase in frequency(59.26%)of occurrences and encountered more severe declines(21.65%)in tree growth subsequent to the 1990s,contrasting sharply with Group B,which observed lower frequencies(20.00%)and relatively less severe declines(21.02%)prior to the 1980s.The primary impetus underlying the opposite radial growth increments observed in Larix gmelinii trees from the interplay between their differential response to temperatures and wetter climatic conditions,which is significantly influenced by varying stand densities.In cold-dry conditions,low-density forests may experience soil water freezing,exacerbating drought conditions and thereby inhibiting tree growth,in Group B.Trees growth in high-density stands is restrained by warm-wet conditions,in Group A.These results provide new insights into the variability at the southern edge of the boreal forest biome with different responses to density and climate.
基金supported by the National Natural Science Foundation of China(Grant No.62073041)the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(Grant No.LASAT-2023A04)the Fundamental Research Funds for the Central Universities(Grant Nos.2024CX06011,2024CX06079)。
文摘Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.
基金supported by the National Natural Science Foundation of China(grant number:22274050)the Shanghai Science and Technology Commission(contract number:23J21900300)the Fundamental Research Funds for the Central Universities.
文摘Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using conventional biophysical techniques,such as Xray crystallography and solution nuclear magnetic resonance(NMR),presents challenges due to the inherent flexibility and susceptibility to degradation of RNA.In recent years,solid-state NMR(SSNMR)has rapidly emerged as a promising alternative technique for characterizing RNA structure and dynamics.SSNMR has several distinct advantages,including flexibility in sample states,the ability to capture dynamic features of RNA in solid form,and suitability to character RNAs in various sizes.Recent decade witnessed the growth of ^(1)H-detected SSNMR methods on RNA,which targeted elucidating RNA topology and base pair dynamics in solid state.They have been applied to determine the topology of RNA segment in human immunodeficiency virus(HIV)genome and the base pair dynamics of riboswitch RNA.These advancements have expanded the utility of SSNMR techniques within the RNA research field.This review provides a comprehensive discussion of recent progress in ^(1)H-detected SSNMR investigations into RNA structure and dynamics.We focus on the established ^(1)H-detected SSNMR methods,sample preparation protocols,and the implementation of rapid data acquisition approaches.
基金financially supported by the National Natural Science Foundation of China(52102233)Science and Technology Project of Hebei Education Department(QN2023019).
文摘In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the precipitation of insoluble products covered cathode surface and the slow reaction kinetics.Therefore,a method using a simple one-step hydrothermal preparation and oxalic acid to regulate oxygen vacancies has been reported.A high starting capacity(400 mAh g^(-1))can be achieved by Ov-V2O5,and it is capable of undergoing 200 cycles at 0.4 A g^(-1),with a termination discharge capacity of103 mAh g^(-1).Mechanism analysis demonstrated that metastable structures(AlxV2O5and HxV2O5)were constructed through the insertion of Al^(3+)/H^(+)during discharging,which existed in the lattice intercalation with V2O5.The incorporation of oxygen vacancies lowers the reaction energy barrier while improving the ion transport efficiency.In addition,the metastable structure allows the electrostatic interaction between Al3+and the main backbone to establish protection and optimize the transport channel.In parallel,this work exploits ex-situ characterization and DFT to obtain a profound insight into the instrumental effect of oxygen vacancies in the construction of metastable structures during in-situ electrochemical activation,with a view to better understanding the mechanism of the synergistic participation of Al3+and H+in the reaction.This work not only reports a method for cathode materials to modulate oxygen vacancies,but also lays the foundation for a deeper understanding of the metastable structure of vanadium oxides.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52378401,12202494)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFA1402503,2023YFA1406200,2023YFB3003001)the National Natural Science Foundation of China(Grant Nos.12074138 and 12047530)+2 种基金the Interdisciplinary Integration and Innovation Project of JLUFundamental Research Funds for the Central Universitiesthe Program for JLU Science and Technology Innovative Research Team(JLUSTIRT)。
文摘High-mobility semiconductor nanotubes have demonstrated great potential for applications in high-speed transistors,single-charge detection,and memory devices.Here we systematically investigated the electronic properties of single-walled boron antimonide(BSb)nanotubes using first-principles calculations.We observed that rolling the hexagonal boron antimonide monolayer into armchair(ANT)and zigzag(ZNT)nanotubes induces compression and wrinkling effects,significantly modifying the band structures and carrier mobilities through band folding andπ^(*)-σ^(*)hybridization.As the chiral index increases,the band gap and carrier mobility of ANTs decrease monotonically,where electron mobility consistently exceeds hole mobility.In contrast,ZNTs exhibit a more complex trend:the band gap first increases and then decreases,and the carrier mobility displays oscillatory behavior.In particular,both ANTs and ZNTs could exhibit significantly higher carrier mobilities compared to hexagonal monolayer and zinc-blende BSb,reaching 10^(-3)-10^(-7) cm^(-2)·V^(-1)·s^(-1).Our findings highlight strong curvature-induced modifications in the electronic properties of single-walled BSb nanotubes,demonstrating the latter as a promising candidate for high-performance electronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11965005 and 11964026)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant Nos.2023-JC-YB-021 and 2022JM-035)+1 种基金the Fundamental Research Funds for the Central Universitiesthe 111 Project(Grant No.B17035)。
文摘Novel ordered intermetallic compounds have stimulated much interest.Ru–Al alloys are a prominent class of hightemperature structural materials,but the experimentally reported crystal structure of the intermetallic Ru_(2)Al_(5) phase remains elusive and debatable.To resolve this controversy,we extensively explored the crystal structures of Ru_(2)Al_(5) using first-principles calculations combined with crystal structure prediction technique.Among the calculated x-ray diffraction patterns and lattice parameters of five candidate Ru2Al5structures,those of the orthorhombic Pmmn structure best aligned with recent experimental results.The structural stabilities of the five Ru_(2)Al_(5)structures were confirmed through formation energy,elastic constants,and phonon spectrum calculations.We also comprehensively analyzed the mechanical and electronic properties of the five candidates.This work can guide the exploration of novel ordered intermetallic compounds in Ru–Al alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20B2013 and 12205286)the National Key Research and Development Program of China(Grant No.2022YFB1902401)。
文摘Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO_(2).The formation and growth of recrystallized grains were initially investigated.It was demonstrated that recrystallization kinetics adhere to the Kolmogorov–Johnson–Mehl–Avrami(KJMA)equation,and that recrystallization represents a process of free-energy reduction.Subsequently,the microstructural evolution in UO_(2) was analyzed as the burn up increased.Gas bubbles acted as additional nucleation sites,thereby augmenting the recrystallization kinetics,whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries.The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings.Furthermore,the influence of grain size on microstructure evolution was investigated.Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures.
基金the funding support from the National Natural Science Foundation of China(Grants 22325903,22221003,and 22071225)the National Key Research and Development Program of China(Grant 2018YFA0702001)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(Grants 202203a0520013 and 2021d05050006)the USTC Research Funds of the Double First-Class Initiative(Grant YD2060002032).
文摘The high activity and stability of intermetallic PtCo nanocatalysts toward oxygen reduction reaction make them a top candidate as low-Pt cathode catalysts in proton exchange membrane fuel cells(PEMFCs).However,forming intermetallic structures typically requires high-temperature annealing,posing a challenge for achieving well-size control and highly ordered structures.Here we report the design and synthesis of bimetallic co re@shell structured precursors for affording high-performance intermetallic PtCo catalysts.The fabrication of the core@shell precursor involves using a molecular ligand containing both sulfur and oxygen donors to selectively bind with Pt colloidal nanoparticles as the core and chelate Co ions as the shell.During high-temperature annealing,the ligand transforms into carbon coatings around alloy nanoparticles,preventing particle sintering;meanwhile,Co ions in the shell can easily diffuse into the Pt core,which helps to increase the thermodynamic driving force for forming intermetallic structures.These benefits enable us to obtain the catalyst with finely dispersed nanoparticles(~3.5 nm)and a high ordering degree of 72%.With 0.1 mgPt/cm^(2)cathode loading,the catalyst delivers superior performance and durability in PEMFCs,showing an initial mass activity of 0.56 A/mgPt,an initial power density of 1.05 W/cm^(2)at 0.67 V(H_(2)-air),and a voltage loss of 26 mV at 0.8 A/cm^(2)after the accelerated durability test.