期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Operational feasibility study of stagnation pressure reaction control for a mid-caliber non-spinning projectile
1
作者 F.Bouquet 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期109-121,共13页
Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has develop... Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets. 展开更多
关键词 Supersonic projectile Feasibility study Ram air stagnation pressure reaction control Simulation Attitude control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部