A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calcula...Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calculated based on the Monte−Carlo method when considering parameter correlation and variability.Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability.The relationships among the failure probability,safety factor(Fs),and variation coefficient are explored,and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn.The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability,but correlation increases system reliability or decreases system reliability affected by other parameters.Under the pseudo-static seismic action,sliding on both planes is the main failure mode of wedge system.In addition,the parameters with relatively high sensitivity are two angles related to the joint dip.When the coefficient of variation is consistent,the probability of system failure is a function of the safety factor.展开更多
To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(...To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(4-methoxy)phenylpyrrolidine-C_(60) and four different of bis(N-(4-methoxy)phenylpyrrolidine)-C_(60) compounds through Prato reaction.Their structures were characterized by UVevis,^(1)H NMR,^(13)C NMR,high-resolution mass spectroscopy,and single-crystal X-ray diffraction.Their stabilization effect to NC/NG were investigated using differential scanning calorimetry,methyl violet,vacuum stabilization effect,weight loss,and accelerating rate calorimeter tests.The results indicated these compounds had excellent stabilization effect to NC/NG.The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C_(60).Moreover,the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different,and its stabilization effect to NC is also different.The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows:e-edge>trans-2>cis-2>trans-3.Electron paramagnetic resonance(EPR)and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG.The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide,and their ability is better than that of the monoadduct and C_(60),which is consistent with the results of stabilization effect performance test.展开更多
Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To...Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To solve this problem,a robust adaptive precision motion controller is presented in this paper to address uncertainties and unknown actuator backlash of tank horizontal actuator.The controller handles the modeling uncertainties including parameter uncertainties and unmodeled disturbances by integrating adaptive feedforward compensation and continuous nonlinear robust law.Based on the backstepping method,a smooth backlash inverse model is constructed by combining the adaptive idea.Meanwhile,the unknown backlash parameters of the system can be approximated through the parameter adaptation,and the impact of the actuator backlash nonlinearity is effectively compensated via the inverse operation,which can availably improve the tracking performance.Moreover,the adaptive law can update the disturbance ranges of tank horizontal stabilizer online in real time,which enhances the feasibility in practical engineering applications.Furthermore,the stability analysis based on Lyapunov function shows that with the existence of unmodeled disturbances and unknown actuator backlash,the designed controller guarantees excellent asymptotic output tracking performance.Extensive comparative results verify the effectiveness of the proposed control strategy.展开更多
A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose...A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose(NC)-based propellants.Single-crystal X-ray diffraction,nuclear magnetic resonance,highresolution mass spectrometry,Fourier transform infrared(FT-IR)spectroscopy,and UV-Vis spectroscopy were used to characterize the structures of the synthesized fullerene anisole derivative stabilizers.Methyl violet,differential scanning calorimetry test,isothermal weight loss,vacuum stability test,and adiabatic accelerated test were used to study their compatibility with NC and their ability to stabilize NC.The results show that the designed and synthesized novel fullerene anisole derivative stabilizer has good compatibility with NC,and their overall stabilizing effects on NC are better than those of the traditional stabilizers,diphenylamine(DPA),and N,N’-dimethyl-N,N’-diphenylurea(C2).The stabilizing effects was ranked as:3b>2d>2a>2c>C2>2b>DPA>NC.In addition,FT-IR analysis and electron spin resonance spectroscopy were applied to explore the stability mechanism of fullerene-based stabilizers to NC.The results reveal that the new fullerene stabilizer can adsorb and effectively eliminate the nitrogen oxide free radicals generated by NC degradation;therefore,it can forbid the autocatalytic degradation of NC and stabilize NC.展开更多
This work aims to assessment of the calcitic ornamental stone waste for the stabilization of expansive soil. Calcitic rock-derived waste together with different expansive soils from Egypt were characterized and proces...This work aims to assessment of the calcitic ornamental stone waste for the stabilization of expansive soil. Calcitic rock-derived waste together with different expansive soils from Egypt were characterized and processed for stabilizer optimization. The mineral, chemical and engineering characteristics of the waste and the soil samples were examined using XRD, DTA, TGA, SEM, XRF as well as geotechnical characteristics such as liquid, plastic and shrinkage limits, plasticity index, free swelling, and uni-axial compressive strength, respectively. The calcitic waste has been calcined in an electrical muffle furnace at 1000℃ for 1 hour. The samples were treated by 0–8% waste post calcination for soaking time1– 4 weeks.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to inv...Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.展开更多
To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D...To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2.展开更多
Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significan...Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.展开更多
This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transie...This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transient behavior of the stack with and without blowing gas into the air electrode is almost the same.With a current density of 0.67 A·cm^(-2)@750℃,the stack operated for over 200 h under co-electrolysis conditions without air blowing,and the voltage drop rate of the stack was approximately 0.203%/100 hours.Microstructure analysis revealed a significant loss of nickel particles and an apparent for-mation of an insulating phase strontium chromate(SrCrO4)on the surface of the current collection layer of the air electrode,which are identified as key factors contributing to the performance degradation of the stack.This study provides a reference for development of efficient fuel preparation technology based on SOEC stack in airless environments.展开更多
Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,t...Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.展开更多
Non-aqueous emulsions have a wide range of applications in cosmetics,drug-controlled release,and the preparation of functional nanoparticles.However,due to the weaker polarity of non-aqueous solvents,these emulsions o...Non-aqueous emulsions have a wide range of applications in cosmetics,drug-controlled release,and the preparation of functional nanoparticles.However,due to the weaker polarity of non-aqueous solvents,these emulsions often exhibit inferior stability compared to their aqueous counterparts.In this experiment,the properties of quaternary ammonium surfactants in glycerol were investigated through surface tension measurements,to further enhance the stability of n-decane/glycerol emulsions,hydrophilic nanoparticles SiO_(2) were modified in situ using double tailed quaternary ammonium surfactants Di-C_(12)DAB and Di-C_(16)DAB.Stable n-decane/glycerol Pickering emulsions were successfully prepared.These emulsions were stable at 45℃for over six months,and no significant changes in droplet size occurred.The minimum droplet size of the emulsion was only 2-3μm.Contact angle measurements showed that the wettability of the silica surface was tremendously affected by the concentration and the alkyl chain length of the double-tailed surfactants.In the presence of Di-C_(12)DAB,the contact angle of glycerol on the silica surface increased monotonically with the surfactant concentration.This explains the phenomenon that the Pickering emulsions containing Di-C_(12)DAB and silica particles were stable within the contact angle range of 80°-120°.Comparatively,the contact angle of the glycerol on the silica surface in the presence of Di-C_(16)DAB first increased with surfactant concentrations and then decreased,reaching a maximum at 0.6 mmol/L.It can be concluded that Di-C_(12)DAB formed monolayers at the surface of silica particles within all investigated concentrations.On the contrary,Di-C_(16)DAB formed monolayers at concentrations below 0.6 mmol/L and formed double layers at concentrations above 0.6 mmol/L,leading to a non-monotonic change in the contact angle with respect to concentration.Using these stable non-aqueous Pickering emulsions as templates,polymer microspheres with a particle size of 2-3μm were successfully prepared with high yield.This work is helpful to expand the potential applications of non-aqueous emulsions in the encapsulation of drug,controlled release,material preparation,and cosmetic formulations.展开更多
To study the rolling motion of a ship in the presence of water on its deck,a linear-plus-quadratic damping term was incorporated into its equation of motion.Ship model tests indicates that the key dynamics of the phys...To study the rolling motion of a ship in the presence of water on its deck,a linear-plus-quadratic damping term was incorporated into its equation of motion.Ship model tests indicates that the key dynamics of the physical system are preserved in the ship rolling equation with the linear-plus-quadratic type damping term.To take into account the presence of randomness in the excitation and the response,a new method was developed and a Melnikov criterion was obtained to provide an upper bound on the domain of the potential chaotic rolling motion(erratic rocking).Additionally,the Melnikov criterion proposed in this study was verified by the utilization of phase plane diagrams and Poincare maps.Furthermore,this research has made the initial endeavor to systematically modify the system parameters in the rolling equation of motion for ship stability analysis.展开更多
The effect of external vibration on the velocity uniformity of the moving mechanism of the angular mir⁃ror translational Fourier transform interferometer(hereinafter referred to as interferometer)can be quantitatively...The effect of external vibration on the velocity uniformity of the moving mechanism of the angular mir⁃ror translational Fourier transform interferometer(hereinafter referred to as interferometer)can be quantitatively analysed by the interferometer optical range difference velocity stability.The article proposes a more comprehen⁃sive method of analysing the optical range difference velocity uniformity for the reliability of the interferometer ki⁃nematic mechanism under the influence of on-orbit microvibration in the process of space spectroscopy detection.The method incorporates the structural response of the interferometer caused by external excitation into the stabili⁃ty analysis as one of the influencing factors,so as to reflect the reliability of the interferometer in orbit more realis⁃tically,and judge the microvibration criticality that the interferometer can withstand more accurately.At the same time,an optical surface model of the interferometer is established to further theoretically characterise the effect of microvibration on the homogeneity of the interferometric mechanism.The method discussed in the article pro⁃vides a way of thinking for the judgement of the reliability of the mechanism movement under the external excita⁃tion perturbation as well as the research on the optimisation of the mechanism control.展开更多
In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary varia...In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.展开更多
In this work,we construct two efficient fully decoupled,linear,unconditionally stable numerical algorithms for the thermally coupled incompressible magnetohydrodynamic equations.Firstly,in order to obtain the desired ...In this work,we construct two efficient fully decoupled,linear,unconditionally stable numerical algorithms for the thermally coupled incompressible magnetohydrodynamic equations.Firstly,in order to obtain the desired algorithm,we introduce a scalar auxiliary variable(SAV)to get a new equivalent system.Secondly,by combining the pressure-correction method and the explicit-implicit method,we perform semi-discrete numerical algorithms of first and second order,respectively.Then,we prove that the obtained algorithms follow an unconditionally stable law in energy,and we provide a detailed implementation process,which we only need to solve a series of linear differential equations with constant coefficients at each time step.More importantly,with some powerful analysis,we give the order of convergence of the errors.Finally,to illustrate theoretical results,some numerical experiments are given.展开更多
In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and un...In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.展开更多
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
基金Project(51878668)supported by the National Natural Science Foundation of ChinaProjects(2017-122-058,2018-123-040)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProject([2018]2815)supported by the Guizhou Provincial Department of Science and Technology Foundation,China。
文摘Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calculated based on the Monte−Carlo method when considering parameter correlation and variability.Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability.The relationships among the failure probability,safety factor(Fs),and variation coefficient are explored,and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn.The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability,but correlation increases system reliability or decreases system reliability affected by other parameters.Under the pseudo-static seismic action,sliding on both planes is the main failure mode of wedge system.In addition,the parameters with relatively high sensitivity are two angles related to the joint dip.When the coefficient of variation is consistent,the probability of system failure is a function of the safety factor.
基金This work was supported by National Natural Science Foundation of China(51972278)Outstanding Youth Science and Technology Talents Program of Sichuan(no.19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.19fksy04).
文摘To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(4-methoxy)phenylpyrrolidine-C_(60) and four different of bis(N-(4-methoxy)phenylpyrrolidine)-C_(60) compounds through Prato reaction.Their structures were characterized by UVevis,^(1)H NMR,^(13)C NMR,high-resolution mass spectroscopy,and single-crystal X-ray diffraction.Their stabilization effect to NC/NG were investigated using differential scanning calorimetry,methyl violet,vacuum stabilization effect,weight loss,and accelerating rate calorimeter tests.The results indicated these compounds had excellent stabilization effect to NC/NG.The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C_(60).Moreover,the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different,and its stabilization effect to NC is also different.The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows:e-edge>trans-2>cis-2>trans-3.Electron paramagnetic resonance(EPR)and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG.The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide,and their ability is better than that of the monoadduct and C_(60),which is consistent with the results of stabilization effect performance test.
基金supported in part by the National Natural Science Foundation of China under Grant 51905271,Grant No.52275062and Grant No.52075262。
文摘Backlash nonlinearity inevitably exists in the actuator of tank horizontal stabilizer and has adverse effect on the system control performance,however,how to effectively eliminate its effect remains a pending issue.To solve this problem,a robust adaptive precision motion controller is presented in this paper to address uncertainties and unknown actuator backlash of tank horizontal actuator.The controller handles the modeling uncertainties including parameter uncertainties and unmodeled disturbances by integrating adaptive feedforward compensation and continuous nonlinear robust law.Based on the backstepping method,a smooth backlash inverse model is constructed by combining the adaptive idea.Meanwhile,the unknown backlash parameters of the system can be approximated through the parameter adaptation,and the impact of the actuator backlash nonlinearity is effectively compensated via the inverse operation,which can availably improve the tracking performance.Moreover,the adaptive law can update the disturbance ranges of tank horizontal stabilizer online in real time,which enhances the feasibility in practical engineering applications.Furthermore,the stability analysis based on Lyapunov function shows that with the existence of unmodeled disturbances and unknown actuator backlash,the designed controller guarantees excellent asymptotic output tracking performance.Extensive comparative results verify the effectiveness of the proposed control strategy.
基金financial support received from the Natural Science Foundation of China(Grant No.51972278)Outstanding Youth Science and Technology Talents Program of Sichuan(Grant No.19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials(Southwest University of Science and Technology,Grant No.20fksy16)。
文摘A series of fullerene anisole derivative stabilizers was synthesized by nucleophilic substitution reaction using hexachlorofullerene and benzyl alcohol as raw materials to extend the service duration of nitrocellulose(NC)-based propellants.Single-crystal X-ray diffraction,nuclear magnetic resonance,highresolution mass spectrometry,Fourier transform infrared(FT-IR)spectroscopy,and UV-Vis spectroscopy were used to characterize the structures of the synthesized fullerene anisole derivative stabilizers.Methyl violet,differential scanning calorimetry test,isothermal weight loss,vacuum stability test,and adiabatic accelerated test were used to study their compatibility with NC and their ability to stabilize NC.The results show that the designed and synthesized novel fullerene anisole derivative stabilizer has good compatibility with NC,and their overall stabilizing effects on NC are better than those of the traditional stabilizers,diphenylamine(DPA),and N,N’-dimethyl-N,N’-diphenylurea(C2).The stabilizing effects was ranked as:3b>2d>2a>2c>C2>2b>DPA>NC.In addition,FT-IR analysis and electron spin resonance spectroscopy were applied to explore the stability mechanism of fullerene-based stabilizers to NC.The results reveal that the new fullerene stabilizer can adsorb and effectively eliminate the nitrogen oxide free radicals generated by NC degradation;therefore,it can forbid the autocatalytic degradation of NC and stabilize NC.
文摘This work aims to assessment of the calcitic ornamental stone waste for the stabilization of expansive soil. Calcitic rock-derived waste together with different expansive soils from Egypt were characterized and processed for stabilizer optimization. The mineral, chemical and engineering characteristics of the waste and the soil samples were examined using XRD, DTA, TGA, SEM, XRF as well as geotechnical characteristics such as liquid, plastic and shrinkage limits, plasticity index, free swelling, and uni-axial compressive strength, respectively. The calcitic waste has been calcined in an electrical muffle furnace at 1000℃ for 1 hour. The samples were treated by 0–8% waste post calcination for soaking time1– 4 weeks.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金Dalian Science and Technology Innovation Fund Project (2022JJ11CG008)。
文摘Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.
文摘To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2.
文摘Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.
基金co-supported by the National Key R&D Program of China(No.2022YFB4002203)Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(No.LBMHY24B060003)Ningbo Key R&D Project(No.2023Z155).
文摘This work investigates the transient performance and stability of CO_(2)/H_(2)O co-electrolysis in an air-free environment using a flat-tube solid oxide electrolysis cell(SOEC)stack.The results showed that the transient behavior of the stack with and without blowing gas into the air electrode is almost the same.With a current density of 0.67 A·cm^(-2)@750℃,the stack operated for over 200 h under co-electrolysis conditions without air blowing,and the voltage drop rate of the stack was approximately 0.203%/100 hours.Microstructure analysis revealed a significant loss of nickel particles and an apparent for-mation of an insulating phase strontium chromate(SrCrO4)on the surface of the current collection layer of the air electrode,which are identified as key factors contributing to the performance degradation of the stack.This study provides a reference for development of efficient fuel preparation technology based on SOEC stack in airless environments.
文摘Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.
文摘Non-aqueous emulsions have a wide range of applications in cosmetics,drug-controlled release,and the preparation of functional nanoparticles.However,due to the weaker polarity of non-aqueous solvents,these emulsions often exhibit inferior stability compared to their aqueous counterparts.In this experiment,the properties of quaternary ammonium surfactants in glycerol were investigated through surface tension measurements,to further enhance the stability of n-decane/glycerol emulsions,hydrophilic nanoparticles SiO_(2) were modified in situ using double tailed quaternary ammonium surfactants Di-C_(12)DAB and Di-C_(16)DAB.Stable n-decane/glycerol Pickering emulsions were successfully prepared.These emulsions were stable at 45℃for over six months,and no significant changes in droplet size occurred.The minimum droplet size of the emulsion was only 2-3μm.Contact angle measurements showed that the wettability of the silica surface was tremendously affected by the concentration and the alkyl chain length of the double-tailed surfactants.In the presence of Di-C_(12)DAB,the contact angle of glycerol on the silica surface increased monotonically with the surfactant concentration.This explains the phenomenon that the Pickering emulsions containing Di-C_(12)DAB and silica particles were stable within the contact angle range of 80°-120°.Comparatively,the contact angle of the glycerol on the silica surface in the presence of Di-C_(16)DAB first increased with surfactant concentrations and then decreased,reaching a maximum at 0.6 mmol/L.It can be concluded that Di-C_(12)DAB formed monolayers at the surface of silica particles within all investigated concentrations.On the contrary,Di-C_(16)DAB formed monolayers at concentrations below 0.6 mmol/L and formed double layers at concentrations above 0.6 mmol/L,leading to a non-monotonic change in the contact angle with respect to concentration.Using these stable non-aqueous Pickering emulsions as templates,polymer microspheres with a particle size of 2-3μm were successfully prepared with high yield.This work is helpful to expand the potential applications of non-aqueous emulsions in the encapsulation of drug,controlled release,material preparation,and cosmetic formulations.
文摘To study the rolling motion of a ship in the presence of water on its deck,a linear-plus-quadratic damping term was incorporated into its equation of motion.Ship model tests indicates that the key dynamics of the physical system are preserved in the ship rolling equation with the linear-plus-quadratic type damping term.To take into account the presence of randomness in the excitation and the response,a new method was developed and a Melnikov criterion was obtained to provide an upper bound on the domain of the potential chaotic rolling motion(erratic rocking).Additionally,the Melnikov criterion proposed in this study was verified by the utilization of phase plane diagrams and Poincare maps.Furthermore,this research has made the initial endeavor to systematically modify the system parameters in the rolling equation of motion for ship stability analysis.
文摘The effect of external vibration on the velocity uniformity of the moving mechanism of the angular mir⁃ror translational Fourier transform interferometer(hereinafter referred to as interferometer)can be quantitatively analysed by the interferometer optical range difference velocity stability.The article proposes a more comprehen⁃sive method of analysing the optical range difference velocity uniformity for the reliability of the interferometer ki⁃nematic mechanism under the influence of on-orbit microvibration in the process of space spectroscopy detection.The method incorporates the structural response of the interferometer caused by external excitation into the stabili⁃ty analysis as one of the influencing factors,so as to reflect the reliability of the interferometer in orbit more realis⁃tically,and judge the microvibration criticality that the interferometer can withstand more accurately.At the same time,an optical surface model of the interferometer is established to further theoretically characterise the effect of microvibration on the homogeneity of the interferometric mechanism.The method discussed in the article pro⁃vides a way of thinking for the judgement of the reliability of the mechanism movement under the external excita⁃tion perturbation as well as the research on the optimisation of the mechanism control.
基金Supported by the Research Project Supported of Shanxi Scholarship Council of China(No.2021-029)Shanxi Provincial International Cooperation Base and Platform Project(202104041101019)Shanxi Province Natural Science Research(202203021211129)。
文摘In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)Shanxi Provincial International Cooperation Base and Platform Project(202104041101019)Shanxi Province Natural Science Foundation(202203021211129)。
文摘In this work,we construct two efficient fully decoupled,linear,unconditionally stable numerical algorithms for the thermally coupled incompressible magnetohydrodynamic equations.Firstly,in order to obtain the desired algorithm,we introduce a scalar auxiliary variable(SAV)to get a new equivalent system.Secondly,by combining the pressure-correction method and the explicit-implicit method,we perform semi-discrete numerical algorithms of first and second order,respectively.Then,we prove that the obtained algorithms follow an unconditionally stable law in energy,and we provide a detailed implementation process,which we only need to solve a series of linear differential equations with constant coefficients at each time step.More importantly,with some powerful analysis,we give the order of convergence of the errors.Finally,to illustrate theoretical results,some numerical experiments are given.
基金Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.