In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also...In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.展开更多
A time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed ...A time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite volume element (SCNMFVE) formu- lation based on two local Gaussian integrals and parameter-free with the second-order time accuracy is established directly from the time semi-discrete CN formulation so that it could avoid the discussion for semi-discrete SCNMFVE formulation with respect to spatial wriables and its theoretical analysis becomes very simple. Finally, the error estimates of SCNMFVE solutions are provided.展开更多
基金supported by the National Science Foundation of China(11271127)Science Research Project of Guizhou Province Education Department(QJHKYZ[2013]207)
文摘In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.
基金supported by National Science Foundation of China(11271127)Science Research Project of Guizhou Province Education Department(QJHKYZ[2013]207)
文摘A time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite volume element (SCNMFVE) formu- lation based on two local Gaussian integrals and parameter-free with the second-order time accuracy is established directly from the time semi-discrete CN formulation so that it could avoid the discussion for semi-discrete SCNMFVE formulation with respect to spatial wriables and its theoretical analysis becomes very simple. Finally, the error estimates of SCNMFVE solutions are provided.