In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, whi...In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, which include the well-known p-system. From this viewpoint, the author establishes the global existence and the nonlinear stability of travelling wave solutions by L-2 energy method.展开更多
In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the...In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the large solutions are stable. And we obtain the equivalent condition of this stability condition. Moreover, the global existence and the stability of two-dimensional MHD equations under three-dimensional perturbations are also established.展开更多
In this paper,we consider an inflow problem for the non-isentropic Navier-StokesPoisson system in a half line(0,∞).For the general gas including ideal polytropic gas,we first give some results for the existence of th...In this paper,we consider an inflow problem for the non-isentropic Navier-StokesPoisson system in a half line(0,∞).For the general gas including ideal polytropic gas,we first give some results for the existence of the stationary solution with the aid of center manifold theory on a 4×4 system of autonomous ordinary differential equations.We also show the time asymptotic stability of the stationary solutions with small strength under smallness assumptions on the initial perturbations by using an elementary energy method.展开更多
In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded ...In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].展开更多
This paper is concerned with the exponential stability of weak solutions to a linear one-dimensional thermoviscoelastic system with clamped boundary conditions. This system defines a C0-semigroup {S(t)}t≥0 on the s...This paper is concerned with the exponential stability of weak solutions to a linear one-dimensional thermoviscoelastic system with clamped boundary conditions. This system defines a C0-semigroup {S(t)}t≥0 on the space L^2(0, 1) × C^1 (0,1) × H^1(0, 1), which processes the property of the exponential stability.展开更多
In this paper,we consider the 3D magnetic Bénard problem.More precisely,we prove that the large solutions are stable under certain conditions.And we obtain the equivalent condition with respect to this stability ...In this paper,we consider the 3D magnetic Bénard problem.More precisely,we prove that the large solutions are stable under certain conditions.And we obtain the equivalent condition with respect to this stability condition.Finally,we also establish the stability of 2 D magnetic Bénard problem under 3D perturbations.展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain li...For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.展开更多
Using the dual Morse index theory, we study the stability of subharmonic solutions of first-order autonomous Hamiltonian systems with anisotropic growth, that is, we obtain a sequence of elliptic subharmonic solutions...Using the dual Morse index theory, we study the stability of subharmonic solutions of first-order autonomous Hamiltonian systems with anisotropic growth, that is, we obtain a sequence of elliptic subharmonic solutions(that is, all its Floquet multipliers lying on the unit circle on the complex plane C).展开更多
In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability,and show that there are not any periodic solutions in some a neibou...In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability,and show that there are not any periodic solutions in some a neibourhood of the equilibrium points of the dynamical systems.展开更多
In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability, and show that there are not any periodic solutions in some a neibo...In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability, and show that there are not any periodic solutions in some a neibourhed of the equilibrium points of the dynamical systems.展开更多
In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness...In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness and stability of C'-solutions ofthe iterated equation (*) and also there is a proved theorem for the continuous dependence of Cr-solutions of iterated equation (*) on the given function.展开更多
We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics...We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function φ(T ) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an ad-ditional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,u...In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,used new methods,the scalarization theorem and Lagrange multiplier theorem for ε-super effcient solution are established.展开更多
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided...The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.展开更多
In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations ...In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations and fixed point theorem. Then, the exponential stability of almost periodic solutions to such BAM neural networks on time scales is discussed by utilizing differential inequality. Finally, an example is given to support our results in this paper and the results are up-to-date.展开更多
In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q...In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.展开更多
The influence of dissolved oxygen content on the oxidative stability of a linked polymer solution (LPS) was studied by micro-filtration, dynamic light scattering and viscosity measurements. The results showed that at ...The influence of dissolved oxygen content on the oxidative stability of a linked polymer solution (LPS) was studied by micro-filtration, dynamic light scattering and viscosity measurements. The results showed that at the same temperature, the degree of the oxidative degradation of the LPS increased and the rapidity of the oxidative degradation was accelerated with the increase of the dissolved oxygen content. Consequently, the size of linked polymer coils (LPCs) of the LPS became small, and the plugging capability of the LPS decreased. At a fixed content of dissolved oxygen, with increasing degradation temperature, almost the same results were observed, namely, an increased degree of oxidative degradation, accelerated rapidity of the oxidative degradation and decreased plugging capacity, with decreased oxidative stability of LPS. At 90 °C, in the presence of oxygen, LPS lost its plugging capability after having been degraded for a period of time. But at 40 °C, LPS with low dissolved oxygen content could be stable for a long time. The decreased plugging ability of LPS after oxidative degradation is mainly caused by the decreased size and number of the LPCs due to the breaking of hydrolyzed polyacrylamide (HPAM) molecule segments and the structural changing of HPAM molecules.展开更多
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
文摘In this paper, author considers a 3 x 3 system for a reacting flow model propesed by [9]. Since this model has source term, it can be considered as a relaxation approximation to 2 x 2 systems of conservation laws, which include the well-known p-system. From this viewpoint, the author establishes the global existence and the nonlinear stability of travelling wave solutions by L-2 energy method.
基金supported by 973 Program(2011CB711100)supported by NSFC (11171229)
文摘In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the large solutions are stable. And we obtain the equivalent condition of this stability condition. Moreover, the global existence and the stability of two-dimensional MHD equations under three-dimensional perturbations are also established.
文摘In this paper,we consider an inflow problem for the non-isentropic Navier-StokesPoisson system in a half line(0,∞).For the general gas including ideal polytropic gas,we first give some results for the existence of the stationary solution with the aid of center manifold theory on a 4×4 system of autonomous ordinary differential equations.We also show the time asymptotic stability of the stationary solutions with small strength under smallness assumptions on the initial perturbations by using an elementary energy method.
基金financially supported by the Vietnam National Foundation for Science and Technology Development under grant number 101.02-2021.04financially supported by Vietnam Ministry of Education and Training under Project B2022-BKA-06.
文摘In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].
文摘This paper is concerned with the exponential stability of weak solutions to a linear one-dimensional thermoviscoelastic system with clamped boundary conditions. This system defines a C0-semigroup {S(t)}t≥0 on the space L^2(0, 1) × C^1 (0,1) × H^1(0, 1), which processes the property of the exponential stability.
基金supported partially by NSFC(11571380,11971497,11871230)Natural Science Foundation of GuangDong Province(2019B151502041)+3 种基金supported partially by NSFC(11126266)Natural Science Foundation of GuangDong Province(2016A030313390)SCAU Fund for High-level University Buildingsupported partially by NSFC(11971496)。
文摘In this paper,we consider the 3D magnetic Bénard problem.More precisely,we prove that the large solutions are stable under certain conditions.And we obtain the equivalent condition with respect to this stability condition.Finally,we also establish the stability of 2 D magnetic Bénard problem under 3D perturbations.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
文摘For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.
基金supported by NSFC(11471170,11790271)innovation and development project of Guangzhou University
文摘Using the dual Morse index theory, we study the stability of subharmonic solutions of first-order autonomous Hamiltonian systems with anisotropic growth, that is, we obtain a sequence of elliptic subharmonic solutions(that is, all its Floquet multipliers lying on the unit circle on the complex plane C).
文摘In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability,and show that there are not any periodic solutions in some a neibourhood of the equilibrium points of the dynamical systems.
文摘In this paper, we consider the dynamical systems which are from a kind of Hamilton systems under a disturbance. We use theories in Liapunov stability, and show that there are not any periodic solutions in some a neibourhed of the equilibrium points of the dynamical systems.
文摘In this paper, we consider the iterated equationλ1f(x) + λ2f2(x)=F(x)where f2(x)= f(f(x)), F (x) denotes known function and f(x) denotes the unknown function. There are given conditions for the existence, uniqueness and stability of C'-solutions ofthe iterated equation (*) and also there is a proved theorem for the continuous dependence of Cr-solutions of iterated equation (*) on the given function.
基金Gui-Qiang CHEN was supported in part by the UK EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE(EP/E035027/1)the NSFC under a joint project Grant 10728101+4 种基金the Royal Society-Wolfson Research Merit Award(UK)Changguo XIAO was supported in part by the NSFC under a joint project Grant 10728101Yongqian ZHANG was supported in part by NSFC Project 11031001NSFC Project 11121101the 111 Project B08018(China)
文摘We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function φ(T ) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an ad-ditional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
基金Supported by the Natural Science Foundation of the Education Department of Henan Province(2004110008)
文摘In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,used new methods,the scalarization theorem and Lagrange multiplier theorem for ε-super effcient solution are established.
基金the Science Foundation of Guangdong Province in China
文摘The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.
基金Partially supported by the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(Grant No.202101BA070001-045).
文摘In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations and fixed point theorem. Then, the exponential stability of almost periodic solutions to such BAM neural networks on time scales is discussed by utilizing differential inequality. Finally, an example is given to support our results in this paper and the results are up-to-date.
文摘In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.
文摘The influence of dissolved oxygen content on the oxidative stability of a linked polymer solution (LPS) was studied by micro-filtration, dynamic light scattering and viscosity measurements. The results showed that at the same temperature, the degree of the oxidative degradation of the LPS increased and the rapidity of the oxidative degradation was accelerated with the increase of the dissolved oxygen content. Consequently, the size of linked polymer coils (LPCs) of the LPS became small, and the plugging capability of the LPS decreased. At a fixed content of dissolved oxygen, with increasing degradation temperature, almost the same results were observed, namely, an increased degree of oxidative degradation, accelerated rapidity of the oxidative degradation and decreased plugging capacity, with decreased oxidative stability of LPS. At 90 °C, in the presence of oxygen, LPS lost its plugging capability after having been degraded for a period of time. But at 40 °C, LPS with low dissolved oxygen content could be stable for a long time. The decreased plugging ability of LPS after oxidative degradation is mainly caused by the decreased size and number of the LPCs due to the breaking of hydrolyzed polyacrylamide (HPAM) molecule segments and the structural changing of HPAM molecules.