A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and...A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.展开更多
Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated...Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.展开更多
文摘A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.
文摘Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.