In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the sol...In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.展开更多
Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are...Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.展开更多
By using a Fourier series expansion method combined with Chew's perfectly matched layers (PMLs), we analyze the frequency and quality factor of a micro-cavity on a two-dimensional photonic crystal is analyzed. Comp...By using a Fourier series expansion method combined with Chew's perfectly matched layers (PMLs), we analyze the frequency and quality factor of a micro-cavity on a two-dimensional photonic crystal is analyzed. Compared with the results by the method without PML and finite-difference time-domain (FDTD) based on supercell approximation, it can be shown that by the present method with PMLs, the resonant frequency and the quality factor values can be calculated satisfyingly and the characteristics of the micro-cavity can be obtained by changing the size and permittivity of the point defect in the micro-cavity.展开更多
文摘In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60636030)
文摘Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.
文摘By using a Fourier series expansion method combined with Chew's perfectly matched layers (PMLs), we analyze the frequency and quality factor of a micro-cavity on a two-dimensional photonic crystal is analyzed. Compared with the results by the method without PML and finite-difference time-domain (FDTD) based on supercell approximation, it can be shown that by the present method with PMLs, the resonant frequency and the quality factor values can be calculated satisfyingly and the characteristics of the micro-cavity can be obtained by changing the size and permittivity of the point defect in the micro-cavity.