期刊文献+
共找到34,534篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-hop quantum teleportation based on HSES via GHZ-like states
1
作者 She-Xiang Jiang Xiao-Long Wei +1 位作者 Jin-Huan Li Shuai-Shuai Li 《Chinese Physics B》 2025年第1期60-70,共11页
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum... Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol. 展开更多
关键词 multi-hop quantum teleportation GHZ-like state hierarchical simultaneous entanglement swapping IBM Quantum Experiment platform quantum state tomography
在线阅读 下载PDF
Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states
2
作者 Jian-Dong Zhang Chuang Li +1 位作者 Lili Hou Shuai Wang 《Chinese Physics B》 2025年第1期228-233,共6页
Quantum phase estimation based on Gaussian states plays a crucial role in many application fields.In this paper,we study the precision bound for the scheme using two-mode squeezed Gaussian states.The quantum Fisher in... Quantum phase estimation based on Gaussian states plays a crucial role in many application fields.In this paper,we study the precision bound for the scheme using two-mode squeezed Gaussian states.The quantum Fisher information is calculated and its maximization is used to determine the optimal parameters.We find that two single-mode squeezed vacuum states are the optimal Gaussian inputs for a fixed two-mode squeezing process.The corresponding precision bound is sub-Heisenberg-limited and scales as N^(-1)/2.For practical purposes,we consider the effects originating from photon loss.The precision bound can still outperform the shot-noise limit when the lossy rate is below 0.4.Our work may demonstrate a significant and promising step towards practical quantum metrology. 展开更多
关键词 quantum metrology Gaussian state Heisenberg limit
在线阅读 下载PDF
Atomically precise M-N-C electrocatalysts for oxygen reduction:Effects of inter-site distance,metal-metal interaction,coordination environment,and spin states
3
作者 Junfeng Huang Saira Ajmal +4 位作者 Anuj Kumar Jianwen Guo Mohammed Mujahid Alam Abdullah G.Al-Sehemi Ghulam Yasin 《Journal of Energy Chemistry》 2025年第2期132-155,I0004,共25页
Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These cata... Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These catalysts performed remarkably well in the electrocatalytic oxygen reduction reaction(ORR)due to their distinct coordination and electrical structures,Nonetheless,their maximum efficacy in practical applications has yet to be achieved.This agenda identifies tailoring the coordination environment,spin states,intersite distance,and metal-metal interaction as innovative approaches to regulate the ORR performance of these catalysts.However,it is necessary to undertake a precise assessment of these methodologies and the knowledge obtained to be implemented in the design of future M-N-C catalysts for ORR.Therefore,this review aims to analyze recent progress in M-N-C ORR catalysts,emphasizing their innovative engineering with aspects such as alteration in intersite distance,metal-metal interaction,coordination environment,and spin states.Additionally,we critically discuss how to logically monitor the atomic structure,local coordination,spin,and electronic states of M-N-C catalysts to modulate their ORR activity.We have also highlighted the challenges associated with M-N-C catalysts and proposed suggestions for their future design and fabrication. 展开更多
关键词 ELECTROCATALYSIS M-N-C electrocatalysts ORR Activity descriptors Spin states
在线阅读 下载PDF
Electromagnetically-induced-absorption-like ground state cooling in a hybrid optomechanical system
4
作者 Yaoyong Dong Xuejun Zheng +1 位作者 Denglong Wang Peng Zhao 《Chinese Physics B》 2025年第4期413-421,共9页
We present a scheme for the electromagnetically-induced-absorption(EIA)-like ground state cooling in a hybrid optomechanical system which is combined by two-level quantum systems(qubits)and a high-Q optomechanical cav... We present a scheme for the electromagnetically-induced-absorption(EIA)-like ground state cooling in a hybrid optomechanical system which is combined by two-level quantum systems(qubits)and a high-Q optomechanical cavity.Under the weak qubit-cavity coupling,the system exhibits an EIA-like effect and this effect is caused by quantum destructive interference that is distinct from the conventional EIA effect driven by quantum constructive interference.More importantly,the EIA-like cooling mechanism can significantly enhance the cooling rate of the hybrid system,enabling the final phonon number beyond the classical cooling limit in the strong optomechanical coupling regime.Meanwhile,the cooling effects of the EIA case is better than that of the normalmode splitting case under the same optomechanical coupling strength and qubit dissipation rate. 展开更多
关键词 electromagnetically induced absorption ground state cooling OPTOMECHANICS
在线阅读 下载PDF
Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
5
作者 Tengdong Zhang Rui Fan +4 位作者 Yan Gao Yanling Wu Xiaodan Xu Dao-Xin Yao Jun Li 《Chinese Physics B》 2025年第2期111-116,共6页
Transition metal dichalcogenides(TMDs), exhibit a range of crystal structures and topological quantum states. The1T phase, in particular, shows promise for superconductivity driven by electron–phonon coupling(EPC), s... Transition metal dichalcogenides(TMDs), exhibit a range of crystal structures and topological quantum states. The1T phase, in particular, shows promise for superconductivity driven by electron–phonon coupling(EPC), strain, pressure,and chemical doping. In this theoretical investigation, we explore 1T-Rh Se Te as a novel type of TMD superconductor with topological electronic states. The optimal doping structure and atomic arrangement of 1T-Rh Se Te are constructed.Phonon spectrum calculations validate the integrity of the constructed doping structure. The analysis of the electron–phonon coupling using the electron–phonon Wannier(EPW) method has confirmed the existence of a robust electron–phonon interaction in 1T-Rh Se Te, resulting in total EPC constant λ = 2.02, the logarithmic average frequency ω_(log)= 3.15 me V and T_c = 4.61 K, consistent with experimental measurements and indicative of its classification as a BCS superconductor.The band structure analysis revealed the presence of Dirac-like band crossing points. The topological non-trivial electronic structures of the 1T-Rh Se Te are confirmed via the evolution of Wannier charge centers(WCCs) and time-reversal symmetryprotected topological surface states(TSSs). These distinctive properties underscore 1T-Rh Se Te as a possible candidate for a topological superconductor, warranting further investigation into its potential implications and applications. 展开更多
关键词 SUPERCONDUCTIVITY topological electronic state transition metal dichalcogenides
在线阅读 下载PDF
Quantum-enhanced interferometry with unbalanced entangled coherent states
6
作者 Jun Tang Zi-Hang Du +2 位作者 Wei Zhong Lan Zhou Yu-Bo Sheng 《Chinese Physics B》 2025年第2期54-62,共9页
We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). ... We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information(QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy. 展开更多
关键词 quantum-enhanced interferometry entangled coherent state quantum Fisher information
在线阅读 下载PDF
Evaluation of detonation performance of explosives ICM-101,ONC,and TNAZ based on improved VHL equation of state
7
作者 Yong Han Qin Liu +2 位作者 Yingliang Duan Yaqi Zhao Xinping Long 《Defence Technology(防务技术)》 2025年第2期83-97,共15页
Detonation performance is crucial for evaluating the power of high explosives(HEs),and the equation of state(EOS)that accurately describes the high-temperature,high-pressure,and high-temperature,medium-pressure states... Detonation performance is crucial for evaluating the power of high explosives(HEs),and the equation of state(EOS)that accurately describes the high-temperature,high-pressure,and high-temperature,medium-pressure states of detonation products is key to assessing the damage efficiency of these energetic materials.This article examines the limitations of the VLW EOS in representing the thermodynamic states of explosive detonation gas products under high-temperature and medium-to high-pressure conditions.A new gas EOS for detonation products,called VHL(Virial-Han-Long),is proposed.The accuracy of VHL in describing gas states under high-temperature and medium-to high-pressure conditions is verified,and its performance in evaluating explosive detonation and working capabilities is explored.The results demonstrate that VHL exhibits high precision in calculating detonation performance.Subsequently,the detonation performance of three new HEs(ICM-101,ONC,and TNAZ)was calculated and compared to traditional HEs(TATB,CL-20,and HMX).The results indicate that ONC has superior detonation performance compared to the other explosives,while ICM-101 shows a detonation velocity similar to CL-20 but with slightly lower detonation pressure.The detonation characteristics of TNAZ are comparable to those of the standard HE HMX.From the perspective of products,considering the comprehensive work performance(mechanical work and detonation heat),both ONC and ICM-101demonstrate relatively superior performance. 展开更多
关键词 Equation of state Detonation performance Working capability THERMODYNAMICS High explosive
在线阅读 下载PDF
Prediction of the first 2^(+) states properties for atomic nuclei using light gradient boosting machine
8
作者 Hui Liu Xin-Xiang Li +2 位作者 Yun Yuan Wen Luo Yi Xu 《Nuclear Science and Techniques》 2025年第2期95-102,共8页
The first 2^(+)excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus,providing insights into the validity of the shell model and nuclear structure characteristics.A... The first 2^(+)excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus,providing insights into the validity of the shell model and nuclear structure characteristics.Although the features of the first 2^(+)excited states can be measured for stable nuclei and calculated using nuclear models,significant uncertainty remains.This study employs a machine learning model based on a light gradient boosting machine(LightGBM)to investigate the first 2^(+)excited states.Specifically,the training of the LightGBM algorithm and the prediction of the first 2^(+)properties of 642 nuclei are presented.Furthermore,detailed comparisons of the LightGBM predictions were performed with available experimental data,shell model calculations,and Bayesian neural network predictions.The results revealed that the average difference between the LightGBM predictions and the experimental data was 18 times smaller than that obtained by the shell model and only 70%of the BNN prediction results.Considering Mg,Ca,Kr,Sm,and Pb isotopes as examples,it was also observed that LightGBM can effectively reproduce the magic number mutation caused by shell effects,with the energy being as low as 0.04 MeV due to shape coexistence.Therefore,we believe that leveraging LightGBM-based machine learning can profoundly enhance our insights into nuclear structures and provide new avenues for nuclear physics research. 展开更多
关键词 First 2^(+) state Nuclear levels Light gradient boosting machine
在线阅读 下载PDF
Deformation energy of tectonic coal under hydrostatic conditions:A new calculation model based on critical state theory
9
作者 Chenghao Wang Haisong Liu +2 位作者 Yuanping Cheng Liang Wang Jingyu Jiang 《International Journal of Mining Science and Technology》 2025年第1期87-100,共14页
The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional ela... The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional elastic-based models for computing Wdunsuitable.Inspired by critical state soil mechanics,this study theoretically established a new calculation model of Wdsuitable for the coal with nonlinear deformation characteristics.In the new model,the relationship between energy and stress no longer follows the square law(observed in traditional linear elastic models)but exhibits a power function,with the theoretical value of the power exponent ranging between 1 and 2.Hydrostatic cyclic loading and unloading experiments were conducted on four groups of tectonic coal samples and one group of intact coal samples.The results indicated that the relationship between Wdand stress for both intact and tectonic coal follows a power law.The exponents for intact and tectonic coal are close to 2 and 1,respectively.The stress-strain curve of intact coal exhibits small deformation and linear characteristics,whereas the stress-strain curves of tectonic coal show large deformation and nonlinear characteristics.The study specifically investigates the role of coal viscosity in the cyclic loading/unloading process.The downward bending in the unloading curves can be attributed to the time-dependent characteristics of coal,particularly its viscoelastic behavior.Based on experimental statistics,the calculation model of Wdwas further simplified.The simplified model involves only one unknown parameter,which is the power exponent between Wdand stress.The measured Wdof the coal samples increases with the number of load cycles.This phenomenon is attributed to coal's viscoelastic deformation.Within the same stress,the Wdof tectonic coal is an order of magnitude greater than that of intact coal.The calculation model of Wdproposed in this paper provides a new tool for studying the energy principle of coal and gas outbursts. 展开更多
关键词 Coal and gas outburst Tectonic coal Deformation energy Calculation model Critical state soil mechanics
在线阅读 下载PDF
Yielding performance of compact yielding anchor cable in working state:Analytical theory and experimental evaluation of yielding resistance enhancement effect
10
作者 Zhenyu Wang Bo Wang +2 位作者 Xinxin Guo Jinjin Li Zhenwang Ma 《International Journal of Mining Science and Technology》 2025年第1期101-120,共20页
To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The ... To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters. 展开更多
关键词 Compact yielding anchor cables Working state Yielding resistance enhancement effect Yielding mechanical performance Pull-out test
在线阅读 下载PDF
Morphology and valence state evolution of Cu:Unraveling the impact on nitric oxide electroreduction 被引量:2
11
作者 Ting Sun Fengyu Gao +4 位作者 Ya Wang Honghong Yi Qingjun Yu Shunzheng Zhao Xiaolong Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期276-286,共11页
Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption... Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance. 展开更多
关键词 NORR Ammonia Synthesis COPPER MORPHOLOGY Valence states Mechanism
在线阅读 下载PDF
Thermal safety boundary of lithium-ion battery at different state of charge 被引量:1
12
作者 Hang Wu Siqi Chen +8 位作者 Yan Hong Chengshan Xu Yuejiu Zheng Changyong Jin Kaixin Chen Yafei He Xuning Feng Xuezhe Wei Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期59-72,共14页
Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg... Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems. 展开更多
关键词 Lithium-ion battery Battery safety Thermal runaway state of charge Numerical analysis
在线阅读 下载PDF
Preparation of entangledW states based on the cavity QED system
13
作者 Ke Li Jun-Long Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期290-296,共7页
We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where ... We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers. 展开更多
关键词 W state detuned interaction state fusion cavity quantum electrodynamics
在线阅读 下载PDF
Entropy variances of pure coherent states in the diffusion channel
14
作者 Wei-Feng Wu Yong Fang Peng Fu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期384-388,共5页
Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum rep... Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states. 展开更多
关键词 entangled state representation diffusion channel coherent state entropy evolution
在线阅读 下载PDF
Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
15
作者 毛梦辉 周唯 +3 位作者 李新慧 杨然 龚彦晓 祝世宁 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期50-54,共5页
Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic... Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks. 展开更多
关键词 machine learning state estimation quantum state tomography polarization-entangled photon source
在线阅读 下载PDF
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
16
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
在线阅读 下载PDF
Beyond axial symmetry:high-energy collisions unveil the ground-state shape of ^(238)U
17
作者 Giuliano Giacalone 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第12期455-458,共4页
How does the strong force shape the structure of atomic nuclei- The STAR collaboration at the BNL Relativistic Heavy Ion Collider(RHIC) demonstrate that ultra-relativistic collision experiments give key insights into ... How does the strong force shape the structure of atomic nuclei- The STAR collaboration at the BNL Relativistic Heavy Ion Collider(RHIC) demonstrate that ultra-relativistic collision experiments give key insights into this fundamental question. From dedicated measurements in ^(238)U+^(238)U collisions at 100 GeV/nucleon energy, the STAR collaboration determine the deformed shape of the ^(238)U nucleus, showing in particular that the experimental observables probe the elusive ground-state triaxiality of this isotope. These results pave the way to systematic characterizations of ground-state nuclear properties at high-energy colliders. 展开更多
关键词 state SYMMETRY DEFORMED
在线阅读 下载PDF
Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
18
作者 沈云峰 许孝芳 +2 位作者 孙铭 周文佶 常雅箐 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期480-491,共12页
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru... We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system. 展开更多
关键词 valley photonic crystal topological edge states topological corner states higher-order topological insulators topological phase transition
在线阅读 下载PDF
Predicted Critical State Based on Invariance of the Lyapunov Exponent in Dual Spaces
19
作者 刘通 夏旭 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期68-76,共9页
Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it canno... Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena. 展开更多
关键词 state EXPONENT CRITICAL
在线阅读 下载PDF
The 5αcondensate state in 20Ne
20
作者 Takahiro Kawabata 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期3-5,共3页
Theclustering phenomenon,in which nucleons are arranged intoparticles(4 He nuclei)within a nuclear system,is one of the most intriguing aspects of nuclear structure.It has been observed in various light nuclei,such as... Theclustering phenomenon,in which nucleons are arranged intoparticles(4 He nuclei)within a nuclear system,is one of the most intriguing aspects of nuclear structure.It has been observed in various light nuclei,such as^(8)Be,^(12)C,^(16)O,and^(20)Ne,and is responsible for many exotic and fascinating phenomena,such as the Hoyle state in^(12)C,which plays an essential role in stellar nucleosynthesis[1-6]as well as in heavy-ion collisions[7-9]. 展开更多
关键词 STRUCTURE state
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部