We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered spher...We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid,The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed,with particular emphasis on the shell thickness of every layer,and the width of the Gaussian beam.The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka,as well as the shell thickness of each layer.This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave,which may benefit the improvement and development of acoustic control technology,such as trapping,sorting,and assembling a cell,and drug delivery applications.展开更多
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
基金Project supported by National Key R&D Program of China(Grant No.2016YFF0203000)the National Natural Science Foundation of China(Grant Nos.11774167 and 61571222)+2 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.020414380001)the Key Laboratory of Underwater Acoustic Environment,Institute of Acoustics,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)the AQSIQ Technology R&D Program of China(Grant No.2017QK125)
文摘We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid,The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed,with particular emphasis on the shell thickness of every layer,and the width of the Gaussian beam.The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka,as well as the shell thickness of each layer.This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave,which may benefit the improvement and development of acoustic control technology,such as trapping,sorting,and assembling a cell,and drug delivery applications.
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).