Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to...Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated.展开更多
Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sph...Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sphalerite are comprehensively studied using density functional theory Hubbard U(DFT+U)calculations combined with coordination chemistry flotation.The band gap of ideal sphalerite is 3.723 eV,and thus electron transition is difficult to occur,resulting in poor floatability.The results suggest the band gap of sphalerite decreases with increasing iron content.For low iron content,the decreased band gap facilitates electron transition;at this case,Fe^(2+)in a high-spin state possesses oneπelectron pair,which can form a weakπ-backbonding with xanthate,causing increasing floatability.However,for medium and high iron-bearing sphalerite,with the further decrease of band gap,Fe^(2+)is oxidized to Fe^(3+)due to electrochemical interaction,and henceπ-backbonding is eliminated,leading to lower floatability of iron-bearing sphalerite,which is consistent with the flotation experimental results.This work could give a deeper understanding of how sphalerite flotation behaviors are affected by iron content.展开更多
基金supported by the Postdoctoral Fellowship Program(Grade A)of China Postdoctoral Science Foundation(No.BX20240429)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2024ZD1004007)+3 种基金the National Key R&D Program of China(Nos.2022YFC2904502 and 2022YFC2904501)the National Natural Science Foundation of China(No.52204298)the Major Science and Technology Projects in Yunnan Province(No.202202AB080012)the High Performance Computing Center of Central South University。
文摘Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated.
基金This work was supported by the National Natural Science Foundation of People’s Republic of China(No.NSFC52174246)the Interdisciplinary Scientific Research Foundation of Guangxi University(No.2022JCC016).
文摘Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sphalerite are comprehensively studied using density functional theory Hubbard U(DFT+U)calculations combined with coordination chemistry flotation.The band gap of ideal sphalerite is 3.723 eV,and thus electron transition is difficult to occur,resulting in poor floatability.The results suggest the band gap of sphalerite decreases with increasing iron content.For low iron content,the decreased band gap facilitates electron transition;at this case,Fe^(2+)in a high-spin state possesses oneπelectron pair,which can form a weakπ-backbonding with xanthate,causing increasing floatability.However,for medium and high iron-bearing sphalerite,with the further decrease of band gap,Fe^(2+)is oxidized to Fe^(3+)due to electrochemical interaction,and henceπ-backbonding is eliminated,leading to lower floatability of iron-bearing sphalerite,which is consistent with the flotation experimental results.This work could give a deeper understanding of how sphalerite flotation behaviors are affected by iron content.