A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is trans...A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is transmitted simultaneously. In order to maximize the beamforming gain, the transmitters use one bit feedback information to adjust the phase offset. It tracks the direction in which the signal strength at the receiver can increase. The directional search and perturbation theory is used to achieve the phase alignment. The feasibility of the proposed algorithm is proved both experimentally and theoretically. Simulation results show that the proposed algorithm can improve the convergent speed of the phase alignment.展开更多
The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving t...The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introduc- ing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles, this pa- per proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDE Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
基金supported by the National Natural Science Foundation of China(6130115561571003)+2 种基金the Ministry of Education(MCM20130111)the Funds for the Central Universities(ZYGX2014J001)the State Grid Power(W2015000333)
文摘A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is transmitted simultaneously. In order to maximize the beamforming gain, the transmitters use one bit feedback information to adjust the phase offset. It tracks the direction in which the signal strength at the receiver can increase. The directional search and perturbation theory is used to achieve the phase alignment. The feasibility of the proposed algorithm is proved both experimentally and theoretically. Simulation results show that the proposed algorithm can improve the convergent speed of the phase alignment.
基金supported by the National Natural Science Foundation of China (60574088 60874053)
文摘The delayed-state-derivative feedback (DSDF) is in- troduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accele- rate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introduc- ing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles, this pa- per proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDE Simulations are provided to demonstrate the effectiveness of the theoretical results.