The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail...The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail sampling the received signal at a Nyquist rate,and they are not viable for wideband signals due to their high cost.This paper expounds on how sub-Nyquist sampling in conjunction with deep learning can be leveraged to remove this limitation.To this end,we propose a multi-task learning(MTL)framework using convolutional neural networks for the joint inference of the underlying narrowband signal number,their modulation scheme,and their location in a wideband spectrum.We demonstrate the effectiveness of the proposed framework for real-world millimeter-wave wideband signals collected by physical devices,exhibiting a 91.7% accuracy in the joint inference task when considering up to two narrowband signals over a wideband spectrum.Ultimately,the proposed data-driven approach enables on-the-fly wideband spectrum sensing,combining accuracy,and computational efficiency,which are indispensable for CR and opportunistic networking.展开更多
The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio m...The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods.展开更多
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis...Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.展开更多
To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic upd...To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.展开更多
After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“...After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“approximately 0.1℃and 0.5%”should be“approximately 0.1℃and 0.5‰”.展开更多
We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by va...We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.展开更多
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
The effective intervention strategy for autism spectrum disorder(ASD)are currently limited.Herein,we attempted to evaluate the potential of L-proline(Pro),a multifunctional amino acid,in ameliorating autismlike behavi...The effective intervention strategy for autism spectrum disorder(ASD)are currently limited.Herein,we attempted to evaluate the potential of L-proline(Pro),a multifunctional amino acid,in ameliorating autismlike behaviors and clarify the molecular mechanisms involved by using the typical valproic acid(VPA)-induced mouse model of ASD.Pro significantly attenuates repetitive behaviors and social dysfunction in ASD mice.The correlation analysis revealed that the beneficial effects of Pro on autism-like behaviors are related to the modulation of gut microbiota structure and composition.The histological analysis revealed that Pro could reverse the decrease of Nissl-positive cells in the prefrontal cortex(PFC)induced by VPA exposure.RNA sequencing demonstrated that Pro can also alter the PFC transcriptomic profile distinguished by the regulation of genes involved in Parkinson disease,neuroactive ligand-receptor interaction,oxidative phosphorylation,and mitogen activated protein kinase signaling pathway.Overall,dietary Pro supplementation may be a promising intervention strategy for ASD.展开更多
This paper is mainly about the spectral properties of a class of Jacobi operators(H_(c,b)u)(n)=c_(n)u(n+1)+c_(n-1)u(n-1)+b_(n)u(n),.where∣c_(n)−1∣=O(n^(−α))and b_(n)=O(n^(−1)).We will show that,forα≥1,the singula...This paper is mainly about the spectral properties of a class of Jacobi operators(H_(c,b)u)(n)=c_(n)u(n+1)+c_(n-1)u(n-1)+b_(n)u(n),.where∣c_(n)−1∣=O(n^(−α))and b_(n)=O(n^(−1)).We will show that,forα≥1,the singular continuous spectrum of the operator is empty.展开更多
To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAV...To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAVs is proposed,which is modeled as a mixed-integer non-convex optimization problem(MINCOP).An algorithm to estimate the minimum number of required UAVs is firstly proposed based on the pre-estimation and simulated annealing.The MINCOP is then decomposed into three sub-problems based on the block coordinate descent method,including the spectrum allocation of UAVs,the association between UAVs and ground users,and the deployment of UAVs.Specifically,the optimal spectrum allocation is derived based on the interference mitigation and channel reuse.The association between UAVs and ground users is optimized based on local iterated optimization.A particle-based optimization algorithm is proposed to resolve the subproblem of the UAVs deployment.Simulation results show that the proposed method could effectively improve the minimum transmission rate of UAVs as well as user fairness of spectrum allocation.展开更多
TToo tthhee eeddiittoorr::Autism spectrum disorder(ASD)is believed to have a multifactorial aetiology involving both genetics and environmental factors.Evidence also emphasises that ASD is programmed during the in ute...TToo tthhee eeddiittoorr::Autism spectrum disorder(ASD)is believed to have a multifactorial aetiology involving both genetics and environmental factors.Evidence also emphasises that ASD is programmed during the in utero period,with multiple prenatal and postnatal factors influencing the epigenome and contributing to the onset of ASD.展开更多
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu...Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.展开更多
Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spec...Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.展开更多
(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属...基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属指认,并和实验光谱进行了对比.绘制了分子表面静电势,分析分子可能发生亲电和亲核反应的位点.利用含时密度泛函理论(Time-dependent density functional theory,TDDFT)计算了加替沙星分子的激发态,讨论了加替沙星分子内的电子跃迁.该研究为分析加替沙星的光谱和电子结构提供了理论基础.展开更多
文摘The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail sampling the received signal at a Nyquist rate,and they are not viable for wideband signals due to their high cost.This paper expounds on how sub-Nyquist sampling in conjunction with deep learning can be leveraged to remove this limitation.To this end,we propose a multi-task learning(MTL)framework using convolutional neural networks for the joint inference of the underlying narrowband signal number,their modulation scheme,and their location in a wideband spectrum.We demonstrate the effectiveness of the proposed framework for real-world millimeter-wave wideband signals collected by physical devices,exhibiting a 91.7% accuracy in the joint inference task when considering up to two narrowband signals over a wideband spectrum.Ultimately,the proposed data-driven approach enables on-the-fly wideband spectrum sensing,combining accuracy,and computational efficiency,which are indispensable for CR and opportunistic networking.
文摘The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods.
文摘Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.
文摘To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.
文摘After publication of this article1,it was brought to our at-tention that the mathematical expressions‘‰’were mis-takenly replaced by‘%’for salinities.Details are listed below.1.In the last sentence in abstract,“approximately 0.1℃and 0.5%”should be“approximately 0.1℃and 0.5‰”.
基金supported by the National Natural Science Foundation of China(Grant No.12004049)the Fund of State Key Laboratory of IPOC(BUPT)(Grant Nos.600119525 and 505019124).
文摘We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
基金supported by Beijing Natural Science Foundation(7222249).
文摘The effective intervention strategy for autism spectrum disorder(ASD)are currently limited.Herein,we attempted to evaluate the potential of L-proline(Pro),a multifunctional amino acid,in ameliorating autismlike behaviors and clarify the molecular mechanisms involved by using the typical valproic acid(VPA)-induced mouse model of ASD.Pro significantly attenuates repetitive behaviors and social dysfunction in ASD mice.The correlation analysis revealed that the beneficial effects of Pro on autism-like behaviors are related to the modulation of gut microbiota structure and composition.The histological analysis revealed that Pro could reverse the decrease of Nissl-positive cells in the prefrontal cortex(PFC)induced by VPA exposure.RNA sequencing demonstrated that Pro can also alter the PFC transcriptomic profile distinguished by the regulation of genes involved in Parkinson disease,neuroactive ligand-receptor interaction,oxidative phosphorylation,and mitogen activated protein kinase signaling pathway.Overall,dietary Pro supplementation may be a promising intervention strategy for ASD.
文摘This paper is mainly about the spectral properties of a class of Jacobi operators(H_(c,b)u)(n)=c_(n)u(n+1)+c_(n-1)u(n-1)+b_(n)u(n),.where∣c_(n)−1∣=O(n^(−α))and b_(n)=O(n^(−1)).We will show that,forα≥1,the singular continuous spectrum of the operator is empty.
基金supported by Project funded by China Postdoctoral Science Foundation(No.2021MD703980)。
文摘To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAVs is proposed,which is modeled as a mixed-integer non-convex optimization problem(MINCOP).An algorithm to estimate the minimum number of required UAVs is firstly proposed based on the pre-estimation and simulated annealing.The MINCOP is then decomposed into three sub-problems based on the block coordinate descent method,including the spectrum allocation of UAVs,the association between UAVs and ground users,and the deployment of UAVs.Specifically,the optimal spectrum allocation is derived based on the interference mitigation and channel reuse.The association between UAVs and ground users is optimized based on local iterated optimization.A particle-based optimization algorithm is proposed to resolve the subproblem of the UAVs deployment.Simulation results show that the proposed method could effectively improve the minimum transmission rate of UAVs as well as user fairness of spectrum allocation.
文摘TToo tthhee eeddiittoorr::Autism spectrum disorder(ASD)is believed to have a multifactorial aetiology involving both genetics and environmental factors.Evidence also emphasises that ASD is programmed during the in utero period,with multiple prenatal and postnatal factors influencing the epigenome and contributing to the onset of ASD.
基金supported by Department of Science and Technology of Jilin Province of China(Nos.YDZJ202301 ZYTS481,202202901032GX,and 20230402068GH)。
文摘Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
基金supported by the Key Projects of the 2022 National Defense Science and Technology Foundation Strengthening Plan 173 (Grant No.2022-173ZD-010)the Equipment PreResearch Foundation of The State Key Laboratory (Grant No.6142101200204)。
文摘Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
文摘基于密度泛函理论(Density functional theory,DFT),M06-2X/6-311G(d,p)基组水平下对加替沙星分子的初始结构进行优化.计算其振动频率,采用VEDA4软件基于势能分布(Potential energy distribution,PED)计算结果对特征振动模式进行了归属指认,并和实验光谱进行了对比.绘制了分子表面静电势,分析分子可能发生亲电和亲核反应的位点.利用含时密度泛函理论(Time-dependent density functional theory,TDDFT)计算了加替沙星分子的激发态,讨论了加替沙星分子内的电子跃迁.该研究为分析加替沙星的光谱和电子结构提供了理论基础.