The problem of combined radar imagery from multiple sparse frequency subbands initially incoherent to each other is of practical importance for radar target discrimination.A new coherent processing technique based on ...The problem of combined radar imagery from multiple sparse frequency subbands initially incoherent to each other is of practical importance for radar target discrimination.A new coherent processing technique based on probability density analysis of the subband data is proposed,which is applicable for radar imaging from measurements of two or more initially incoherent radar subbands.The coherence parameters for both amplitude and phase are obtained by combining modern spectral analysis with probability density estimation.The major advantage of the proposed technique lies in that it enables much more robust cohering for the sparse subband data of real-world complex targets.展开更多
An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by...An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.展开更多
One of the phenolic acids is 4-hydroxybenzoic acid(HBA)which takes the form of a white crystalline solid with a molecular formula of C 7H 6O 3,a melting point of 214.5℃and a molecular weight of 138.12 g·mol^(-1)...One of the phenolic acids is 4-hydroxybenzoic acid(HBA)which takes the form of a white crystalline solid with a molecular formula of C 7H 6O 3,a melting point of 214.5℃and a molecular weight of 138.12 g·mol^(-1).It soluble in polar organic solvents like acetone and alcohols,and slightly soluble in chloroform and water.The reactions between the metal ions and the HBA were carried out under specific conditions like(molar reaction was 2∶2(ligand to metal),reaction temperature was 60℃,media was neutral(pH 7),and solvent was H 2O∶MeOH(1∶1).Under these conditions,the HBA was deprotonated to form(HOC_(6)H_(4)CO^(2);L^(-)).The ligand L-was coordinated to the metal ions forming the metal complexation.The reaction of 4-hydroxybenzoic acid(HOC 6H 4CO 2H;HL)with the Ni(Ⅱ),Mn(Ⅱ)and Cu(Ⅱ)ions afford metal-complexes with gross formula of[Ni_(2)L_(2)(NO_(3))_(2)(H_(2)O)_(4)],[Mn_(2)L_(2)(NO_(3))_(2)(H_(2)O)_(4)]and[Cu_(2)L_(2)(NO_(3))_(2)(H_(2)O)_(4)],respectively.These complexes were characterized by elemental analysis(CHN),magnetic susceptibility,UV-Vis spectra,infrared(IR),and X-ray powder diffraction(XRD)techniques.The complexes of HBA are insoluble in common solvents and hence molar conductance could not be measured,but this very insolubility indicates that the complexes are neutral.Data has demonstrated that the ligand(L^(-))was coordinated to the metal ion by bidentate bridging carboxylate group(COO^(-)),with an octahedral geometry.Thus,HBA is expected to act as bidentate uninegative ions and the coordination number of the metal ions is six.XRD results showed that the complexes possess uniform and organized microstructures in the nanometer range with a main diameter in the range of 11~28 nm.展开更多
A new forward scattering bistatic radar motion compensation method based on spectral analysis and minimum waveform entropy is proposed. In order to demonstrate effectiveness of the presented method and ground vehicles...A new forward scattering bistatic radar motion compensation method based on spectral analysis and minimum waveform entropy is proposed. In order to demonstrate effectiveness of the presented method and ground vehicles imaging function of forward scattering radar, a simple bistatic forward scattering radar experiment system is set up on both sides of a road to collection ground vehicles experimental data. Finally, experimental ground vehicles imaging results confirm validity of the proposed motion compensation method and the experimental imaging results are identical with computer simulation results in the same parameter and condition.展开更多
文摘The problem of combined radar imagery from multiple sparse frequency subbands initially incoherent to each other is of practical importance for radar target discrimination.A new coherent processing technique based on probability density analysis of the subband data is proposed,which is applicable for radar imaging from measurements of two or more initially incoherent radar subbands.The coherence parameters for both amplitude and phase are obtained by combining modern spectral analysis with probability density estimation.The major advantage of the proposed technique lies in that it enables much more robust cohering for the sparse subband data of real-world complex targets.
文摘An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.
基金the deanship of scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding program。
文摘One of the phenolic acids is 4-hydroxybenzoic acid(HBA)which takes the form of a white crystalline solid with a molecular formula of C 7H 6O 3,a melting point of 214.5℃and a molecular weight of 138.12 g·mol^(-1).It soluble in polar organic solvents like acetone and alcohols,and slightly soluble in chloroform and water.The reactions between the metal ions and the HBA were carried out under specific conditions like(molar reaction was 2∶2(ligand to metal),reaction temperature was 60℃,media was neutral(pH 7),and solvent was H 2O∶MeOH(1∶1).Under these conditions,the HBA was deprotonated to form(HOC_(6)H_(4)CO^(2);L^(-)).The ligand L-was coordinated to the metal ions forming the metal complexation.The reaction of 4-hydroxybenzoic acid(HOC 6H 4CO 2H;HL)with the Ni(Ⅱ),Mn(Ⅱ)and Cu(Ⅱ)ions afford metal-complexes with gross formula of[Ni_(2)L_(2)(NO_(3))_(2)(H_(2)O)_(4)],[Mn_(2)L_(2)(NO_(3))_(2)(H_(2)O)_(4)]and[Cu_(2)L_(2)(NO_(3))_(2)(H_(2)O)_(4)],respectively.These complexes were characterized by elemental analysis(CHN),magnetic susceptibility,UV-Vis spectra,infrared(IR),and X-ray powder diffraction(XRD)techniques.The complexes of HBA are insoluble in common solvents and hence molar conductance could not be measured,but this very insolubility indicates that the complexes are neutral.Data has demonstrated that the ligand(L^(-))was coordinated to the metal ion by bidentate bridging carboxylate group(COO^(-)),with an octahedral geometry.Thus,HBA is expected to act as bidentate uninegative ions and the coordination number of the metal ions is six.XRD results showed that the complexes possess uniform and organized microstructures in the nanometer range with a main diameter in the range of 11~28 nm.
基金supported by the National Natural Science Foundation of China (60901068)
文摘A new forward scattering bistatic radar motion compensation method based on spectral analysis and minimum waveform entropy is proposed. In order to demonstrate effectiveness of the presented method and ground vehicles imaging function of forward scattering radar, a simple bistatic forward scattering radar experiment system is set up on both sides of a road to collection ground vehicles experimental data. Finally, experimental ground vehicles imaging results confirm validity of the proposed motion compensation method and the experimental imaging results are identical with computer simulation results in the same parameter and condition.