In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de...Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.展开更多
Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potentia...Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.展开更多
This paper considers the short-range sensing imple-mentation in continuous-wave(CW)phased array systems.We specifically address this CW short-range sensing challenges stemming from the self-interference cancellation(S...This paper considers the short-range sensing imple-mentation in continuous-wave(CW)phased array systems.We specifically address this CW short-range sensing challenges stemming from the self-interference cancellation(SIC)operation and synthesis requirement of arbitrary beampatterns for the sensing purpose,which has rarely been researched before.In this paper,unlike the only existed work that exploits the heuris-tic method and shares no analytical solution,an SIC pattern syn-thesis design is presented with a closed-form solution.By utiliz-ing the null-space projection(NSP)method,the proposed method effectively mitigates the self-interference to enable the in-band full-duplex operation of the array system.Subsequently,the NSP design will be innovatively embedded in a singular value decomposition(SVD)based weighted alternating reserve projec-tion(WARP)approach to efficiently synthesize an arbitrary desired pattern by solving a unique rank-deficient weighted least mean square problem.Numerical results validate the effective-ness of the proposed method in terms of beampattern,SIC per-formance,and sensing performance.展开更多
An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of stren...An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.展开更多
To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral load...To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral loads.Using micro camera,acoustic emission(AE)system,and infrared thermal imager,the AE characteristics and thermal radiation temperature migration were studied during the rockburst process.Then,the failure mode and damage evolution of the surrounding rock were analyzed.The results demonstrate that increasing the lateral load can first increase and then reduce the bearing capacity of the hole.In this experiment,the hole failure process could be divided into four periods:quiet,particle ejection,stability failure and collapse.Correspondingly,the AE signals evolved from a calm stage,to have intermittent appearance;then,they were continuous with a sudden increase,and finally increased dramatically.The failure of the surrounding rock was mainly tensile failure,while shear failure tended to first increase and then decrease.Meanwhile,damage to the hole increased gradually during the particle ejection period,whereas damage to the rockburst mainly occurred in the stability failure period.The thermal radiation temperature migration exhibited warming in shallow parts,inward expansion,cooling in the shallow parts with free surface heating,inward expansion,a sudden rise in temperature of the rockburst pits,and finally specimen failure.The initial reinforcement support should fully contribute to surface support.Furthermore,an appropriate tensile capacity and good energy absorption capacity should be established in support systems for high-stress roadways.展开更多
Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,thi...Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,this paper designs a distributed spatio-temporal generative adversarial network(STGAN-D)that,given some initial data and random noise,generates a consecutive sequence of spatio-temporal samples which have a logical relationship.This paper builds a spatio-temporal discriminator to distinguish whether the samples generated by the generator meet the requirements for time and space coherence,and builds a controller for distributed training of the network gradient updated to separate the model training and parameter updating,to improve the network training rate.The model is trained on the skeletal dataset and the traffic dataset.In contrast to traditional generative adversarial networks(GANs),the proposed STGAN-D can generate logically coherent samples with the corresponding spatial and temporal features while avoiding mode collapse.In addition,this paper shows that the proposed model can generate different styles of spatio-temporal samples given different random noise inputs,and the controller can improve the network training rate.This model will extend the potential range of applications of GANs to areas such as traffic information simulation and multiagent adversarial simulation.展开更多
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me...Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.展开更多
In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing ...In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing plate surface,by changing the surface wettability of patterned areas on the nanoscale of graphene printed boards,the automatic formation of liquid gallium patterns on the graphene printed plate surface was simulated.The results indicated that liquid gallium can achieve automatic patterning on the surface of graphene patterned areas;the greater the interaction energy between gallium and carbon atoms,the clearer the pattern;gallium liquid is prone to remain in complex local positions of the pattern,making it difficult to shape the pattern;if the spacing between adjacent pattern lines is too large or too small,it will result in residual gallium liquid between the lines;increasing the thickness of the gallium film will cause the pattern to expand beyond the boundary,but increasing the thickness of the gallium film can also enhance the thickness and uniformity of the pattern lines.In summary,the principle of selective adsorption can be used to achieve the automatic formation of nano patterns,and the pattern formation effect is influenced by factors such as atomic interaction energy and pattern configuration.展开更多
The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorith...The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.展开更多
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
基金Projects(41601424,41171351)supported by the National Natural Science Foundation of ChinaProject(2012CB719906)supported by the National Basic Research Program of China(973 Program)+2 种基金Project(14JJ1007)supported by the Hunan Natural Science Fund for Distinguished Young Scholars,ChinaProject(2017M610486)supported by the China Postdoctoral Science FoundationProjects(2017YFB0503700,2017YFB0503601)supported by the National Key Research and Development Foundation of China
文摘Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate.
文摘Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.
基金supported by the National Natural Science Foundation of China(62001227)the Academy of Finland(315858341489).
文摘This paper considers the short-range sensing imple-mentation in continuous-wave(CW)phased array systems.We specifically address this CW short-range sensing challenges stemming from the self-interference cancellation(SIC)operation and synthesis requirement of arbitrary beampatterns for the sensing purpose,which has rarely been researched before.In this paper,unlike the only existed work that exploits the heuris-tic method and shares no analytical solution,an SIC pattern syn-thesis design is presented with a closed-form solution.By utiliz-ing the null-space projection(NSP)method,the proposed method effectively mitigates the self-interference to enable the in-band full-duplex operation of the array system.Subsequently,the NSP design will be innovatively embedded in a singular value decomposition(SVD)based weighted alternating reserve projec-tion(WARP)approach to efficiently synthesize an arbitrary desired pattern by solving a unique rank-deficient weighted least mean square problem.Numerical results validate the effective-ness of the proposed method in terms of beampattern,SIC per-formance,and sensing performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102201,U2341244).
文摘An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.
基金Project(2017YFC0603003)supported by the National Key Research and Development Project of ChinaProjects(51974009,51674008)supported by the National Natural Science Foundation of China+3 种基金Project(201904a07020010)supported by the Key Research and Development Program of Anhui Province,ChinaProject(2018D187)supported by the Leading Talent Project of Anhui“Special Support Program”,Anhui Provincial Academic and Technology Leaders Research Activities Funding,ChinaProject(gxbjZD2016051)supported by the Excellence Talent Training Program of High School,ChinaProject(2019CX2008)supported by the Graduate Innovation Fund of Anhui University of Science and Technology,China。
文摘To study the mechanism of rockburst and its spatio-temporal evolution criterion,a rockburst simulation experiment was performed on granite specimens,each with a prefabricated circular hole,under different lateral loads.Using micro camera,acoustic emission(AE)system,and infrared thermal imager,the AE characteristics and thermal radiation temperature migration were studied during the rockburst process.Then,the failure mode and damage evolution of the surrounding rock were analyzed.The results demonstrate that increasing the lateral load can first increase and then reduce the bearing capacity of the hole.In this experiment,the hole failure process could be divided into four periods:quiet,particle ejection,stability failure and collapse.Correspondingly,the AE signals evolved from a calm stage,to have intermittent appearance;then,they were continuous with a sudden increase,and finally increased dramatically.The failure of the surrounding rock was mainly tensile failure,while shear failure tended to first increase and then decrease.Meanwhile,damage to the hole increased gradually during the particle ejection period,whereas damage to the rockburst mainly occurred in the stability failure period.The thermal radiation temperature migration exhibited warming in shallow parts,inward expansion,cooling in the shallow parts with free surface heating,inward expansion,a sudden rise in temperature of the rockburst pits,and finally specimen failure.The initial reinforcement support should fully contribute to surface support.Furthermore,an appropriate tensile capacity and good energy absorption capacity should be established in support systems for high-stress roadways.
基金the National Natural Science Foundation of China(61573285).
文摘Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,this paper designs a distributed spatio-temporal generative adversarial network(STGAN-D)that,given some initial data and random noise,generates a consecutive sequence of spatio-temporal samples which have a logical relationship.This paper builds a spatio-temporal discriminator to distinguish whether the samples generated by the generator meet the requirements for time and space coherence,and builds a controller for distributed training of the network gradient updated to separate the model training and parameter updating,to improve the network training rate.The model is trained on the skeletal dataset and the traffic dataset.In contrast to traditional generative adversarial networks(GANs),the proposed STGAN-D can generate logically coherent samples with the corresponding spatial and temporal features while avoiding mode collapse.In addition,this paper shows that the proposed model can generate different styles of spatio-temporal samples given different random noise inputs,and the controller can improve the network training rate.This model will extend the potential range of applications of GANs to areas such as traffic information simulation and multiagent adversarial simulation.
基金supported by the National Natural Science Foundation of China (Project No.72301293)。
文摘Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.
文摘In order to research the feasibility of using the selective adsorption principle to achieve automatic shaping of nano patterns,in this study,using the liquid gallium as the conductive ink and graphene as the printing plate surface,by changing the surface wettability of patterned areas on the nanoscale of graphene printed boards,the automatic formation of liquid gallium patterns on the graphene printed plate surface was simulated.The results indicated that liquid gallium can achieve automatic patterning on the surface of graphene patterned areas;the greater the interaction energy between gallium and carbon atoms,the clearer the pattern;gallium liquid is prone to remain in complex local positions of the pattern,making it difficult to shape the pattern;if the spacing between adjacent pattern lines is too large or too small,it will result in residual gallium liquid between the lines;increasing the thickness of the gallium film will cause the pattern to expand beyond the boundary,but increasing the thickness of the gallium film can also enhance the thickness and uniformity of the pattern lines.In summary,the principle of selective adsorption can be used to achieve the automatic formation of nano patterns,and the pattern formation effect is influenced by factors such as atomic interaction energy and pattern configuration.
基金Jiangsu Water Science and Technology Project(2021081)。
文摘The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.