期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
时空网络特征融合的病理步态识别方法
1
作者 李聪聪 王斌 +1 位作者 李亚南 李一帆 《计算机工程与设计》 北大核心 2025年第7期2109-2116,共8页
针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融... 针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融合步态表征。联合卷积核替换和残差块改进对卷积网络进一步优化。时序网络中引入全局与局部时空特征融合模块,形成对时空特征的更细节表达。融合空间特征和时空特征,减轻Bi LSTM学习空间特征中时间模式的过程中丢失空间特征的影响。所提模型在自建数据集和GAIT-IST数据集上的准确率分别达到了97.69%和94.16%,实验结果表明,该方法较其它方法取得了更优的性能。 展开更多
关键词 病理步态识别 时空网络 特征融合 时空特征 阶梯融合式空洞空间金字塔池化 多尺度特征 全局与局部时空特征融合模块
在线阅读 下载PDF
融合时空特征的视频序列表情识别 被引量:6
2
作者 王晓华 夏晨 +1 位作者 胡敏 任福继 《电子与信息学报》 EI CSCD 北大核心 2018年第3期626-632,共7页
针对视频表情识别,静态特征不能有效描述人脸区域沿时间轴动态变化信息的局限,该文提出一种融合动态纹理信息和运动信息的表情识别方法,借鉴LBP-TOP原理,提出具有时空域描述能力的时空韦伯局部描述子(STWLD)来提取动态纹理信息,同时采... 针对视频表情识别,静态特征不能有效描述人脸区域沿时间轴动态变化信息的局限,该文提出一种融合动态纹理信息和运动信息的表情识别方法,借鉴LBP-TOP原理,提出具有时空域描述能力的时空韦伯局部描述子(STWLD)来提取动态纹理信息,同时采用分块光流直方图(BHOF)描述运动信息,最后利用SVM对融合后的纹理和运动信息完成表情分类。在CK+和MMI表情数据库上的交叉实验结果表明,相比基于单一特征的识别方法,所提方法取得了更好的效果;与其他相关方法的对比实验也验证了该方法的优越性。 展开更多
关键词 视频序列 表情识别 时空韦伯局部描述子 分块光流直方图特征
在线阅读 下载PDF
人体下肢应激微反应自动识别 被引量:2
3
作者 王昊鹏 冯显英 张明亮 《光学精密工程》 EI CAS CSCD 北大核心 2017年第11期2947-2957,共11页
由于现有的动作识别方法不能直接用于人体微反应动作识别,本文基于人体下肢微反应动作特点,构建了一种时空金字塔韦伯局部描述子并设计了基于字典学习的人体下肢微反应自动识别算法。该方法利用时空金字塔韦伯局部描述子提取每一类人体... 由于现有的动作识别方法不能直接用于人体微反应动作识别,本文基于人体下肢微反应动作特点,构建了一种时空金字塔韦伯局部描述子并设计了基于字典学习的人体下肢微反应自动识别算法。该方法利用时空金字塔韦伯局部描述子提取每一类人体下肢微反应动作特征,使用主成分分析法对特征降维;然后,建立每一类动作子字典并将子字典串联形成总的动作字典;最后,通过实验分析了金字塔级数L,降维后每类动作特征维数d_(PCA),每类动作子字典原子个数n_(Atom),以及稀疏阈值C等参数对识别结果的影响,并确定最优参数值L=3,d_(PCA)=30,n_(Atom)=40,C=10。实验结果表明,提出的算法对10种人体下肢微反应动作的识别率均在0.83~0.91之间,平均识别率达到0.86,高于其他动作识别算法。设计的算法更适用于人体下肢微反应动作分类,并可有效提高分类识别率。 展开更多
关键词 人体下肢 应激微反应 动作识别 自动识别 时空金字塔韦伯局部描述子
在线阅读 下载PDF
基于稀疏编码局部时空描述子的动作识别方法 被引量:1
4
作者 赵晓丽 田丽华 李晨 《计算机工程与应用》 CSCD 北大核心 2018年第7期29-35,共7页
针对已有动作识别算法训练速度慢且识别精度不高等问题,提出了基于稀疏编码局部时空描述子的动作识别方法。该方法首先对深度图像进行法线提取,同时应用基于运动能量的自适应时空金字塔对动作帧分块;然后局部聚集法线,得到显著性局部时... 针对已有动作识别算法训练速度慢且识别精度不高等问题,提出了基于稀疏编码局部时空描述子的动作识别方法。该方法首先对深度图像进行法线提取,同时应用基于运动能量的自适应时空金字塔对动作帧分块;然后局部聚集法线,得到显著性局部时空描述子;对局部时空描述子进行稀疏编码得到一组字典向量来重构样本数据;最后利用简化粒子群(sPSO)优化SVM分类器找到最适合样本数据的分类模型。实验在MSRAction3D和MSRGesture3D公开数据集上达到了93.80%和95.83%的识别率,且训练速度较传统方法有明显提升,证明了该方法的有效性和鲁棒性。 展开更多
关键词 动作识别 稀疏编码 简化粒子群 深度序列 局部时空描述子
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部