基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的...基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的大小评定图像分量间相关度的方法,因存在大值噪声点,容易造成假相关,从而影响去噪效果。提出基于差异系数的稀疏度自适应K-SVD去噪算法,通过引入差异系数来平衡因噪声点造成的假相关问题,同时使用相关度均值作为阈值来自适应地产生稀疏度K,避免因给定不恰当的稀疏度而影响去噪效果的问题。在USC标准库上的实验结果表明,所提算法在去噪效果方面有一定的优越性。展开更多
机械故障特征具有周期性、稀疏性以及被噪声污染严重特点,而大部分特征抽取方法(如局部线性嵌入(locally linear embedding,LLE)、局部切空间排列(local tangent space alignment,LTSA))性能往往受到噪声影响.因此,抑制振动信号噪声、...机械故障特征具有周期性、稀疏性以及被噪声污染严重特点,而大部分特征抽取方法(如局部线性嵌入(locally linear embedding,LLE)、局部切空间排列(local tangent space alignment,LTSA))性能往往受到噪声影响.因此,抑制振动信号噪声、抽取有效故障特征成为机械故障检测的关键.本文提出融合奇异值分解与周期重叠簇稀疏(reweighted singular value decomposition integrating with periodic overlapping group sparsity,RSVD-POGS)的机械故障稀疏特征抽取方法.该方法首先利用RSVD把多成分振动信号分解为奇异成分集合,并使用周期调制强度(periodic modulation intensity,PMI)准则选择有效奇异成分,然后使用POGS从奇异成分提取稀疏周期冲击特征,并由选择的奇异成分重构原始信号,增强周期稀疏故障信号特征.最后,使用低SNR仿真周期冲击信号对RSVD-POGS算法与POGS方法进行对比,并将RSVD-POGS方法应用于实验台轴承正常和故障信号的特征提取中.实验结果表明,该算法可以有效地提取稀疏微弱故障特征,具有较大的优越性.展开更多
文摘基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的大小评定图像分量间相关度的方法,因存在大值噪声点,容易造成假相关,从而影响去噪效果。提出基于差异系数的稀疏度自适应K-SVD去噪算法,通过引入差异系数来平衡因噪声点造成的假相关问题,同时使用相关度均值作为阈值来自适应地产生稀疏度K,避免因给定不恰当的稀疏度而影响去噪效果的问题。在USC标准库上的实验结果表明,所提算法在去噪效果方面有一定的优越性。
文摘机械故障特征具有周期性、稀疏性以及被噪声污染严重特点,而大部分特征抽取方法(如局部线性嵌入(locally linear embedding,LLE)、局部切空间排列(local tangent space alignment,LTSA))性能往往受到噪声影响.因此,抑制振动信号噪声、抽取有效故障特征成为机械故障检测的关键.本文提出融合奇异值分解与周期重叠簇稀疏(reweighted singular value decomposition integrating with periodic overlapping group sparsity,RSVD-POGS)的机械故障稀疏特征抽取方法.该方法首先利用RSVD把多成分振动信号分解为奇异成分集合,并使用周期调制强度(periodic modulation intensity,PMI)准则选择有效奇异成分,然后使用POGS从奇异成分提取稀疏周期冲击特征,并由选择的奇异成分重构原始信号,增强周期稀疏故障信号特征.最后,使用低SNR仿真周期冲击信号对RSVD-POGS算法与POGS方法进行对比,并将RSVD-POGS方法应用于实验台轴承正常和故障信号的特征提取中.实验结果表明,该算法可以有效地提取稀疏微弱故障特征,具有较大的优越性.