Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe...Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.展开更多
Ship detection via spaceborne synthetic aperture radar(SAR)has become a research hotspot.However,existing small ship detection methods based on the radar signal domain and SAR image features cannot obtain highly accur...Ship detection via spaceborne synthetic aperture radar(SAR)has become a research hotspot.However,existing small ship detection methods based on the radar signal domain and SAR image features cannot obtain highly accurate results because of the obvious coherent speckle noise at sea and strong reflection interference from near‑shore objects.To resolve the above problems,this study proposes a dual‑domain joint dense multiple small ship target detection method for spaceborne SAR image that simultaneously detects objects in the image and frequency domains.This method uses an attention mechanism module and algorithm structure adjustments to improve the small ship target feature mining ability.In the frequency‑based image generation,extreme signal strength values are detected in the azimuth and range directions,with the results of the two complementing each other to realize dual‑domain joint small ship target detection.The comprehensive qualitative and quantitative evaluation results show that the proposed method can attain a final precision rate of 92.25%and achieve accurate results for SAR ship detection in open‑sea,coastal,and port area ships.The test results for the self‑built SAR small‑ship dataset demonstrate the effectiveness and universality of the method.展开更多
In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation...In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation and symbol detection leverage the framework of expectation propagation(EP)and belief propagation(BP)with the aid of Gaussian approximation,respectively.Furthermore,to reduce the computation complexity involved in channel estimation,the matrix inversion is transformed into a series of diagonal matrix inversions through the Sherman-Morrison formula.Simulation experiments show that the proposed algorithm can reduce the pilot overhead by about 50%,compared with the traditional linear minimum mean square error(LMMSE)algorithm,and can approach to the bit error rate(BER)performance bound of perfectly known channel state information within 0.1 dB.展开更多
This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for n...This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.展开更多
We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the p...We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.展开更多
Due to the complexity of joint structures and the diversity of disorders in the joints,the diagnosis of joint diseases is challenging.Current clinical diagnostic techniques for evaluating joint diseases,such as arthri...Due to the complexity of joint structures and the diversity of disorders in the joints,the diagnosis of joint diseases is challenging.Current clinical diagnostic techniques for evaluating joint diseases,such as arthritis,have strengths and weaknesses.New imaging techniques need to be developed for the diagnosis or auxiliary diagnosis of arthritis.As an emerging nonintrusive low-cost imaging method,microwave-induced thermoacoustic imaging(TAI)can present tissue morphology while providing the tissue microwave energy absorption density distribution related to dielectric properties.TAI is currently in development to potentially visualize joint anatomic structures and to detect arthritis.Here,we offer a mini review to summarize the status of research on TAI of joints and present an outlook to the future development of TAI in the detection of joint diseases.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2024YFE0200600in part by the National Natural Science Foundation of China under Grant 62071425+3 种基金in part by the Zhejiang Key Research and Development Plan under Grant 2022C01093in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LR23F010005in part by the National Key Laboratory of Wireless Communications Foundation under Grant 2023KP01601in part by the Big Data and Intelligent Computing Key Lab of CQUPT under Grant BDIC-2023-B-001.
文摘Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission.
基金supported by the Foundation Strengthening Fund Project(No.2021-JCJQ-JJ0251)in part by the National Natural Science Foundation of China(Nos.42301384 and 42271448)。
文摘Ship detection via spaceborne synthetic aperture radar(SAR)has become a research hotspot.However,existing small ship detection methods based on the radar signal domain and SAR image features cannot obtain highly accurate results because of the obvious coherent speckle noise at sea and strong reflection interference from near‑shore objects.To resolve the above problems,this study proposes a dual‑domain joint dense multiple small ship target detection method for spaceborne SAR image that simultaneously detects objects in the image and frequency domains.This method uses an attention mechanism module and algorithm structure adjustments to improve the small ship target feature mining ability.In the frequency‑based image generation,extreme signal strength values are detected in the azimuth and range directions,with the results of the two complementing each other to realize dual‑domain joint small ship target detection.The comprehensive qualitative and quantitative evaluation results show that the proposed method can attain a final precision rate of 92.25%and achieve accurate results for SAR ship detection in open‑sea,coastal,and port area ships.The test results for the self‑built SAR small‑ship dataset demonstrate the effectiveness and universality of the method.
文摘In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation and symbol detection leverage the framework of expectation propagation(EP)and belief propagation(BP)with the aid of Gaussian approximation,respectively.Furthermore,to reduce the computation complexity involved in channel estimation,the matrix inversion is transformed into a series of diagonal matrix inversions through the Sherman-Morrison formula.Simulation experiments show that the proposed algorithm can reduce the pilot overhead by about 50%,compared with the traditional linear minimum mean square error(LMMSE)algorithm,and can approach to the bit error rate(BER)performance bound of perfectly known channel state information within 0.1 dB.
基金supported by the National Natural Scieince Foundation of China(Nos.52004204 and 52034007).
文摘This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501525)the National Natural Science Foundation of Hunan Province of China(Grant No.2018JJ3680)。
文摘We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.
基金supported by the National Natural Science Foundation of China under Grant No.62001075the Chinese Postdoctoral Science Foundation under Grant No.2022MD723722+1 种基金the Chongqing Postdoctoral Research Project under Grant No.2021XM2026the Scientific and Technological Research Program of Chongqing Municipal Education Commission under Grant No.KJQN202000610.
文摘Due to the complexity of joint structures and the diversity of disorders in the joints,the diagnosis of joint diseases is challenging.Current clinical diagnostic techniques for evaluating joint diseases,such as arthritis,have strengths and weaknesses.New imaging techniques need to be developed for the diagnosis or auxiliary diagnosis of arthritis.As an emerging nonintrusive low-cost imaging method,microwave-induced thermoacoustic imaging(TAI)can present tissue morphology while providing the tissue microwave energy absorption density distribution related to dielectric properties.TAI is currently in development to potentially visualize joint anatomic structures and to detect arthritis.Here,we offer a mini review to summarize the status of research on TAI of joints and present an outlook to the future development of TAI in the detection of joint diseases.