期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
考虑时序特征缺失值动态插补的超短期风电功率预测
1
作者 李丹 唐建 +2 位作者 缪书唯 黄烽云 罗娇娇 《中国电机工程学报》 北大核心 2025年第17期6790-6803,I0015,共15页
风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据... 风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据存在缺失值的问题,设计嵌入时滞衰减插补策略的门控循环单元动态捕捉输入特征时间序列中缺失值前后观测值间的不规则时滞关系,并通过带掩码的自相关分析,确定输入特征的最佳时窗长度和时滞衰减率函数的初始参数;基于门控循环单元提取的时序信息,进一步构建序列到序列的预测结构,协调历史和预测时刻输入特征维度不一致的问题,输出未来15 min~4 h的风电功率预测序列。实验结果表明,所提方法在风电数据含缺失值的情景下,与传统的缺失值处理和预测方法相比,具有更高的预测精度和更稳定的预测性能。 展开更多
关键词 超短期风电功率预测 时序特征缺失值 自相关分析 时滞衰减率函数 序列到序列模型
在线阅读 下载PDF
基于BT-TVPF的变转速下轴承剩余寿命预测方法 被引量:1
2
作者 杨黎凯 张来斌 +2 位作者 何仁洋 段礼祥 张继旺 《机电工程》 北大核心 2025年第6期1118-1125,共8页
变转速下滚动轴承劣化趋势严重,会导致滚动轴承的剩余寿命难以精准预测。针对这一问题,提出了一种基于基线转换(BT)和时变粒子滤波(TVPF)算法的滚动轴承剩余寿命预测方法。首先,提取了20个适用于变转速下滚动轴承振动信号的时频域特征,... 变转速下滚动轴承劣化趋势严重,会导致滚动轴承的剩余寿命难以精准预测。针对这一问题,提出了一种基于基线转换(BT)和时变粒子滤波(TVPF)算法的滚动轴承剩余寿命预测方法。首先,提取了20个适用于变转速下滚动轴承振动信号的时频域特征,并采用BT算法将特征值转换到基线速度下,降低了因变转速引起的过大波动性;然后,利用综合指标筛选了该特征,并使用核主成分分析方法进行了降维融合,构建了用以表征滚动轴承健康状态的最优指标;根据变转速下滚动轴承运行状态的动态变化情况,采用TVPF算法自适应选择了最优退化模型,并利用实时测试数据动态更新了模型参数,完成了滚动轴承剩余寿命精准预测;最后,设计了变转速下滚动轴承全寿命加速实验,对该方法的有效性进行了验证。研究结果表明:和传统模型相比,该方法预测误差降低了39%以上。该方法可以为变转速的工业设备滚动轴承寿命预测提供新的解决思路。 展开更多
关键词 滚动轴承 基线转换算法 时变粒子滤波算法 退化模型构建 健康指标构建 特征选择与降维
在线阅读 下载PDF
基于特征插值TSCTransMix-CapsNet的轴承故障分类模型
3
作者 任义 孙明丽 +1 位作者 栾方军 袁帅 《机电工程》 北大核心 2025年第4期607-617,共11页
针对轴承故障诊断分类模型不能很好地提取到振动序列多层次特征,以及故障样本量稀少的问题,提出了一种基于特征插值的时间序列分类Transformer融合胶囊网络(TSCTransMix-CapsNet)的故障诊断模型。首先,以重叠采样预处理后的一维振动信... 针对轴承故障诊断分类模型不能很好地提取到振动序列多层次特征,以及故障样本量稀少的问题,提出了一种基于特征插值的时间序列分类Transformer融合胶囊网络(TSCTransMix-CapsNet)的故障诊断模型。首先,以重叠采样预处理后的一维振动信号数据作为模型的输入,利用时间序列分类Transformer(TSCTransformer)捕捉了序列长距离关系,提取了振动信号的全局故障特征,同时应用混合数据增强方法(Mixup)对特征做了插值处理,进行了特征增强;然后,利用胶囊网络模型对全局故障特征作了进一步细化处理,提取了局部故障特征,从而形成了包含全局模式和局部细节的特征输出;最后,在多工况条件下选取CWRU和XJTU-SY数据集进行了轴承故障诊断的消融和对比实验,并将该模型与其他模型进行了比较。研究结果表明:该模型在CWRU数据集上的故障诊断准确率达到99.50%,在XJTU-SY数据集上的故障诊断准确率达到99.87%。相比于其他模型,该模型能更加有效地提高轴承故障诊断中的分类性能。 展开更多
关键词 故障诊断模型 时间序列分类Transformer 胶囊网络模型 特征插值 特征增强 混合数据增强方法
在线阅读 下载PDF
湍流场高分辨重构的时程深度学习方法
4
作者 战庆亮 白春锦 葛耀君 《船舶力学》 北大核心 2025年第1期1-11,共11页
湍流的研究离不开高分辨率的流场数据,但受测量方法、计算效率和数据存储等多方面限制,高分辨率湍流数据的直接获取仍比较困难。本文基于流场时程数据的低维表征模型,提出基于神经网络的特征编码预测模型与高分辨率的湍流重构方法。首先... 湍流的研究离不开高分辨率的流场数据,但受测量方法、计算效率和数据存储等多方面限制,高分辨率湍流数据的直接获取仍比较困难。本文基于流场时程数据的低维表征模型,提出基于神经网络的特征编码预测模型与高分辨率的湍流重构方法。首先,基于一维卷积方法建立湍流时程的低维表征模型;然后,基于人工神经网络模型建立测点坐标与特征编码之间的映射关系,实现未知测点的特征编码预测;最后,利用所预测的特征编码结合表征模型的解码器生成求解域内任意位置处的湍流时程。对Re=2.2×10^(4)的方柱湍流场进行低维表征,进而实现高分辨率流场时程数据的重构,并验证方法的准确性。本文所提方法是一种在时间维度上具有高精度的湍流重构方法,且是一种无监督训练方法,可广泛应用于基于一点的传感器数据处理,是一种适用于湍流流场时程数据重构的新方法。 展开更多
关键词 湍流重构 湍流流场时程 深度学习 特征提取 无监督模型
在线阅读 下载PDF
功率谱密度引导下的时间序列预测模型
5
作者 梁立河 崔锦莹 +3 位作者 张雪松 高妮玲 赵涓涓 强彦 《计算机工程与设计》 北大核心 2025年第4期1087-1095,共9页
为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序... 为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序列的长短期特征、实现未来“先验”信息的有效传递和降低异常数据对序列预测的负面影响,提高模型的预测准确性。在3个数据集上进行的实验验证了PSDformer模型的可行性和有效性。 展开更多
关键词 时间序列预测 功率谱密度 编解码器模型 多粒度能量选择 注意力知识引导 序列去噪分解 长短期特征 “先验”信息
在线阅读 下载PDF
基于Transformer神经网络的钻井工况识别方法
6
作者 魏刚 肖林 +3 位作者 李爽 李明明 高耸 高小永 《石油钻探技术》 北大核心 2025年第4期33-41,共9页
为解决传统钻井工况识别方法依赖专家经验与阈值判断、忽视时序依赖且类别和精度受限的问题,提出了一种基于Transformer神经网络的钻井工况高效识别方法。该方法利用多头自注意力机制和残差连接提取时序数据的长时序列依赖特征,并在编... 为解决传统钻井工况识别方法依赖专家经验与阈值判断、忽视时序依赖且类别和精度受限的问题,提出了一种基于Transformer神经网络的钻井工况高效识别方法。该方法利用多头自注意力机制和残差连接提取时序数据的长时序列依赖特征,并在编码器输出端接入前馈全连接分类器进行工况分类;训练采用交叉熵损失和Adam优化器,以得到最优模型参数。利用海上钻井历史数据集对比了CNN,LSTM,CNN−LSTM和Transformer等4种模型的性能,结果表明:所有模型损失曲线均能收敛,但CNN模型和CNN−LSTM模型在100次迭代内收敛缓慢且波动较大,而Transformer模型可迅速稳定收敛;加入衍生特征参数后进一步提升了模型的识别精度与泛化能力。研究结果验证了识别方法在长时序多类别特征捕获方面的优势,为钻井作业工况的高效精准识别提供了创新解决方案,对提升钻井监督智能化水平具有重要工程价值。 展开更多
关键词 钻井工况 识别方法 特征提取 时间依赖性 Transformer模型
在线阅读 下载PDF
SCFNet:一种面向时空预测的外部空间特征融合框架
7
作者 刘腾飞 陈李越 +1 位作者 房江祎 王乐业 《计算机科学》 北大核心 2025年第4期110-118,共9页
道路信息与当前道路的流量模式息息相关,丰富的POI(Point of Interest)语义可以揭示一个地区的属性,人口数据可以揭示一个地区的人口流量趋势。在时空预测中考虑以上外部空间特征对流量带来的影响,可以帮助模型完成更精准的预测。现有... 道路信息与当前道路的流量模式息息相关,丰富的POI(Point of Interest)语义可以揭示一个地区的属性,人口数据可以揭示一个地区的人口流量趋势。在时空预测中考虑以上外部空间特征对流量带来的影响,可以帮助模型完成更精准的预测。现有的外部空间建模方法通常针对输入的外部空间特征,经过神经网络映射学得空间相关语义表示,再与最终的时空流量表示融合。然而,由于流量表示和空间特征之间具有异构性,已有的外部空间特征建模方法往往扩展性不高,只能针对特定外部空间特征或特定时空模型。为解决以上问题,提出了一种针对外部空间特征的通用建模框架SCFNet(Spatial Context Fusion Network for Traffic Forecasting)。具体而言,引入基于信息交互的注意力机制,在时空表示和外部空间特征之间计算注意力分数,从而实现外部空间特征和时空表示的高效融合;同时,设计了一种时间向量动态编码方式,以生成动态的空间特征语义。SCFNet采用模块化设计,能够与各类最新的时空流量预测网络结合。SCFNet支持区域人口数据、道路信息、POI等不同空间静态特征的混合输入。在3个真实交通数据集上进行了实验,实验结果表明,SCFNet可显著提高各类最新时空预测方法(如MTGNN,ASTGCN,GraphWaveNet)的预测精度。 展开更多
关键词 时空预测 外部特征建模 兴趣点 道路特征 人口数量 注意力机制 时变语义
在线阅读 下载PDF
基于多状态空间建模Mamba的电机故障诊断方法
8
作者 徐勇军 曾德灿 《包装工程》 北大核心 2025年第15期269-276,共8页
目的提升包装装备在高负荷连续化生产场景下电机系统多状态故障诊断的精度和效率,解决传统方法对复杂动态特征捕捉不足及模型轻量化不足等问题。方法基于时频域多模态信号特征融合,构建选择性状态空间模型(Mamba)。首先,采用快速傅里叶... 目的提升包装装备在高负荷连续化生产场景下电机系统多状态故障诊断的精度和效率,解决传统方法对复杂动态特征捕捉不足及模型轻量化不足等问题。方法基于时频域多模态信号特征融合,构建选择性状态空间模型(Mamba)。首先,采用快速傅里叶变换提取电机振动信号的全局频域特征,通过连续小波变换生成时频域图像,捕捉局部动态特性;然后,设计基于结构化状态空间建模的特征融合框架,建立电机健康状态动态演化轨迹的微分方程模型;最后,构建轻量化分类器,实现多模态特征协同推理。结果在CWRU和TBVD电机数据集上的实验结果表明,通过时频域特征融合,使得故障分类准确率达到99.88%,相较于单模态方法提升了7.2%;Mamba模型的参数量仅需2.7×10^(6),比传统诊断模型减少了39.3%以上,推理速度提升了3.8倍。结论提出的多状态空间建模方法有效实现了包装装备电机故障特征的动态表征与高效融合,在保持模型轻量化的同时,显著提升了诊断精度,为智能维护系统提供了可工程化部署的解决方案。 展开更多
关键词 时频域特征融合 包装装备故障诊断 选择性状态空间模型 轻量化模型 智能化故障诊断
在线阅读 下载PDF
多尺度通道注意力机制空调启停时间预测研究
9
作者 王华秋 谭佳豪 《重庆理工大学学报(自然科学)》 北大核心 2025年第3期66-74,共9页
为了降低生产车间的空调能耗,构建了一种基于数据分解的通道注意力机制空调启停时间预测模型FDCANet。该模型将输入数据分解为周期性特征与趋势性特征。通过改进通道注意力机制对细节特征进行更深层次的学习,通过特征融合的方式融合内... 为了降低生产车间的空调能耗,构建了一种基于数据分解的通道注意力机制空调启停时间预测模型FDCANet。该模型将输入数据分解为周期性特征与趋势性特征。通过改进通道注意力机制对细节特征进行更深层次的学习,通过特征融合的方式融合内部特征得到预测结果。结果表明:该方法较多个预测模型在多个评价指标上都有更小的误差准确率,MSE、MAE和MAPE平均降低16.67%、5.29%、20.15%,展现出较好的优势,从而更好地预测车间内空调启停时间。使用预测结果后,车间的能耗明显降低,为节能优化提供了有力支撑。 展开更多
关键词 空调启停时间 数据分解 通道注意力机制 预测模型 节能优化
在线阅读 下载PDF
基于多因素特征工程建模的电力负荷预测方法
10
作者 刘硕 丁宇昂 赵梓焱 《沈阳工业大学学报》 北大核心 2025年第3期309-316,共8页
【目的】准确的电力负荷预测是电力系统实现顺利运行和有效管理的关键,可使电力公司有效调度发电设备,从而提高电力系统的运行效率和经济效益。然而,电力负荷数据受多种外部因素影响,同时具有显著的时间依赖性,导致其难以精准预测。为此... 【目的】准确的电力负荷预测是电力系统实现顺利运行和有效管理的关键,可使电力公司有效调度发电设备,从而提高电力系统的运行效率和经济效益。然而,电力负荷数据受多种外部因素影响,同时具有显著的时间依赖性,导致其难以精准预测。为此,提出一种融合多因素建模与时间序列分析的电力负荷预测模型,通过兼顾多因素复杂影响分析与电力负荷时间依赖性特征,实现电力负荷的精准预测。【方法】为了突破多因素分析方法与时间序列预测建模方法各自的局限性,基于深度学习与多因素分析方法,提出了一种结合长短期记忆(long short-term memory,LSTM)网络与贝叶斯优化算法的改进电力负荷预测模型。首先,构建了一个全面的多因素特征池,包括电力负荷的历史时序特征和多种外部因素特征,以充分捕捉电力负荷数据与多种影响因素间的复杂关系。其次,采用LSTM网络作为核心模型,利用其独特的门控机制与记忆单元,捕捉电力负荷数据的时间依赖性和多因素之间的复杂关联。引入贝叶斯优化算法对LSTM模型的超参数进行调优,以高斯过程作为代理模型,充分利用先验信息,提升模型训练效率和预测性能。【结果】利用5个实际变压器数据集对模型进行了训练和测试,并通过多种评价指标验证了模型的有效性。基于多因素特征工程建模的电力负荷预测方法在5个不同变压器数据集上的预测性能均显著优于利用单一因素预测的模型,进一步突出了多因素特征池的有效性。LSTM模型的最大决定系数为0.9207,最小均方误差为0.042,最小平均绝对误差为0.024,表明其在复杂电力负荷预测任务中具有优越性能。【结论】融合多因素建模与时间序列分析的电力负荷预测模型充分考虑了外部因素的复杂性和电力负荷数据的时间依赖性特征,创新性地引入了一个全面的特征池参与LSTM模型的训练和测试。结合多因素特征池建模的LSTM网络具有较高的预测精度和鲁棒性,为电力负荷预测提供了新的技术思路,对智能电网的规划和调度具有重要的参考价值,并为进一步发展精准负荷预测技术奠定了基础。 展开更多
关键词 电力负荷预测 LSTM网络 贝叶斯优化 多因素分析 时间序列预测 特征工程 数据驱动建模 深度学习
在线阅读 下载PDF
考虑时序特征的深圳港集装箱吞吐量组合方法预测 被引量:2
11
作者 贾红雨 李昊林 +2 位作者 杨浩浩 李一 蔡思源 《科学技术与工程》 北大核心 2024年第27期11861-11868,共8页
集装箱吞吐量预测对港口企业运营及决策具有重要的作用。传统集装箱吞吐量预测方法存在预测精度不高的缺点。为解决这一问题,提出了一种考虑季节性和不确定性的SARIMA-XGBoost组合预测方法。针对集装箱吞吐量的季节性特征,选取季节性自... 集装箱吞吐量预测对港口企业运营及决策具有重要的作用。传统集装箱吞吐量预测方法存在预测精度不高的缺点。为解决这一问题,提出了一种考虑季节性和不确定性的SARIMA-XGBoost组合预测方法。针对集装箱吞吐量的季节性特征,选取季节性自回归移动平均模型(seasonal autoregressive integrated moving average model,SARIMA)捕捉周期性特征和线性特征;针对集装箱吞吐量中的不确定性因素,选取极致梯度提升树算法(extreme gradient boosting,XGBoost)自适应学习时间序列数据中的复杂模式和非线性特征。通过选取优化指标并计算分配权重的方式实现了预测模型中线性和非线性特征的有效融合,从而提升预测精度。通过对深圳港2013—2022年集装箱吞吐量月度数据进行实证研究和对比分析,结果表明SARIMA-XGBoost组合方法预测精度最高、稳定性好,验证了该组合方法在集装箱吞吐量预测中的有效性。 展开更多
关键词 集装箱吞吐量 组合预测 时序特征 SARIMA模型 XGBoost算法
在线阅读 下载PDF
基于状态划分和集成学习的轴承剩余使用寿命预测模型 被引量:2
12
作者 胡志辉 王绪光 +2 位作者 王贡献 张腾 李帅琦 《机电工程》 CAS 北大核心 2024年第8期1423-1430,共8页
针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警... 针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警范围,结合连续触发机制自适应确定DST;然后,采用具有自适应噪声的完全集成经验模态分解(CEEMDAN)对退化阶段信号序列进行了自适应分解;最后,构建了集成学习模型,考虑分量的不同特性进行了多步滚动预测,融合预测结果得到了轴承RUL,采用滚动轴承XJTU-SY公开数据集进行了试验验证。研究结果表明:与基于长短时记忆神经网络(LSTM)、反向传播神经网络(BPNN)的预测方法相比,该方法预测结果的平均绝对误差分别降低了11.7%以及5.6%,相对均方根误差分别降低了12.2%以及10.7%,验证了该方法在轴承RUL预测中的有效性和优越性。 展开更多
关键词 滚动轴承剩余使用寿命 退化起始时间 自适应DST状态划分 集成学习模型 退化特征提取 具有自适应噪声的完全集成经验模态分解 长短时记忆神经网络
在线阅读 下载PDF
EHDE和WHO-SVM模型在齿轮箱故障诊断中的应用 被引量:1
13
作者 马晓娜 周海超 《机电工程》 CAS 北大核心 2024年第4期622-632,共11页
针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增... 针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增强层次多样性熵,并将其作为特征提取指标用于提取齿轮箱的故障特征;其次,采用WHO算法对SVM模型的参数进行了优化,建立了参数最优的WHO-SVM分类器;最后,将故障特征样本输入至WHO-SVM分类器中进行了训练和识别,完成了样本的故障识别;利用齿轮箱数据集分别从数据长度敏感性、算法特征提取时间、模型诊断性能三种角度对EHDE、精细复合多尺度样本熵、精细复合多尺度模糊熵、精细复合多尺度排列熵、精细复合多尺度散布熵、精细复合多尺度波动散布熵进行了对比研究。研究结果表明:EHDE方法对数据长度的要求较低,在数据长度为512时即可以取得99.1%的平均识别准确率,在诊断稳定性和诊断精度方面均优于其他对比方法;在算法的泛化性实验中,EHDE方法能够以98%的准确率识别齿轮箱的不同故障类型,具有明显的泛化性和通用性。 展开更多
关键词 齿轮箱故障诊断 增强层次多样性熵 野马算法优化支持向量机 数据长度敏感性 算法特征提取时间 模型诊断性能
在线阅读 下载PDF
长视频的超级帧切割视觉内容解释方法
14
作者 魏英姿 刘王杰 《北京工业大学学报》 CAS CSCD 北大核心 2024年第7期805-813,共9页
针对现有基于编码解码的视频描述方法存在的对视频较长、在视频场景切换频繁情况下视觉特征提取能力不足或关键性片段捕获能力不足等视频描述不佳的问题,提出一种基于超级帧切割长视频的视频字幕方法。首先,提出超级帧提取算法,计算关... 针对现有基于编码解码的视频描述方法存在的对视频较长、在视频场景切换频繁情况下视觉特征提取能力不足或关键性片段捕获能力不足等视频描述不佳的问题,提出一种基于超级帧切割长视频的视频字幕方法。首先,提出超级帧提取算法,计算关键视频时间占比率以满足视频浏览时长限制,缩短视频检索时间。然后,构建两层筛选模型以自适应提取超级帧,过滤冗余关键帧,执行多场景语义描述。将保留的关键帧嵌入周围帧,利用深层网络模型以及小卷积核池化采样域获取更多的视频特征,克服了经典视频标题方法不能直接用于处理长视频的困难。最后,通过用长短时记忆模型代替循环神经网络解码生成视频标题,给出视频内容的分段解释信息。在YouTube数据集视频、合成视频和监控长视频上进行测试,采用多种机器翻译评价指标评估了该方法的性能,均获得了不同程度的提升。实验结果表明,该方法在应对视频场景切换频繁、视频较长等挑战时,能够获得较好的片段描述。 展开更多
关键词 超级帧切割 时间占比率 多场景语义 视觉特征 长短时记忆模型 视频标题
在线阅读 下载PDF
基于遗传算法优化XGBoost模型的地铁乘客出站走行时间预测 被引量:5
15
作者 郭凯旋 肖梅 +1 位作者 刘宇 张皓 《科学技术与工程》 北大核心 2024年第18期7851-7858,共8页
地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间... 地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间和若干特征变量。其次,为了筛选出对走行时间有显著影响的因素,采用相关性分析和最优尺度回归模型进行影响因素分析,并使用遗传算法进行最优特征组合的提取。最终,将提取出的特征作为输入向量,使用极端梯度提升模型(extreme gradient boosting,XGBoost)进行走行时间的预测,并以平均绝对误差等作为评价指标。实验结果表明,本文提出的方法在地铁乘客出站行为预测方面具有较好的效果,平均绝对误差为1.55 s,低于未优化的极端梯度提升模型(1.87 s)、支持向量机(2.03 s)和随机森林(1.96 s)等模型。 展开更多
关键词 遗传算法 极端梯度提升模型 走行时间预测 特征提取
在线阅读 下载PDF
一种预测流程剩余时间的可解释特征分层方法 被引量:2
16
作者 郭娜 刘聪 +3 位作者 李彩虹 陆婷 闻立杰 曾庆田 《软件学报》 EI CSCD 北大核心 2024年第3期1341-1356,共16页
流程剩余时间预测对于业务异常的预防和干预有着重要的价值和意义.现有的剩余时间预测方法通过深度学习技术达到了更高的准确率,然而大多数深度模型结构复杂难以解释预测结果,即不可解释问题.此外,剩余时间预测除了活动这一关键属性还... 流程剩余时间预测对于业务异常的预防和干预有着重要的价值和意义.现有的剩余时间预测方法通过深度学习技术达到了更高的准确率,然而大多数深度模型结构复杂难以解释预测结果,即不可解释问题.此外,剩余时间预测除了活动这一关键属性还会根据领域知识选择若干其他属性作为预测模型的输入特征,缺少通用的特征选择方法,对于预测的准确率和模型的可解释性存在一定的影响.针对上述问题,提出基于可解释特征分层模型(explainable feature-based hierarchical model,EFH model)的流程剩余时间预测框架.具体而言,首先提出特征自选择策略,通过基于优先级的后向特征删除和基于特征重要性值的前向特征选择,得到对预测任务具有积极影响的属性作为模型输入.然后提出可解释特征分层模型架构,通过逐层加入不同特征得到每层的预测结果,解释特征值与预测结果的内在联系.采用LightGBM(light gradient boosting machine)和LSTM(long short-term memory)算法实例化所提方法,框架是通用的,不限于选用算法.最后在8个真实事件日志上与最新方法进行比较.实验结果表明所提方法能够选取出有效特征,提高预测的准确率,并解释预测结果. 展开更多
关键词 流程挖掘 剩余时间预测 特征选择 可解释 分层模型
在线阅读 下载PDF
非定常流场时程重构的深度学习方法 被引量:2
17
作者 战庆亮 白春锦 +1 位作者 吴智虎 葛耀君 《船舶力学》 EI CSCD 北大核心 2024年第3期319-327,共9页
高分辨率的流场数据对流动问题的研究具有重要意义。受测量方法、计算效率等多因素限制,高分辨率流场的直接获取仍有一定困难。本文基于流场时程数据的低维表征模型,提出非定常流动时程数据重构的深度学习方法。该方法直接面向样本时程... 高分辨率的流场数据对流动问题的研究具有重要意义。受测量方法、计算效率等多因素限制,高分辨率流场的直接获取仍有一定困难。本文基于流场时程数据的低维表征模型,提出非定常流动时程数据重构的深度学习方法。该方法直接面向样本时程数据,凭借一维卷积的特性提取出样本中包含的时程特征;然后,建立物理空间与表征模型编码空间之间的映射关系;最后,利用一维反卷积对低维表征进行解码,实现对流场中任意位置数据的重构。对Re_(D)=200的非定常圆柱层流绕流流场进行低维表征与验证,进而实现高分辨率流场时程数据的重构,并证明方法的准确性。本文方法是一种无监督方法,是一种时间维度上具有高精度的流场数据重构方法,适用于基于传感器的时程数据处理。 展开更多
关键词 流场重构 流场时程 深度学习 特征提取 无监督模型
在线阅读 下载PDF
新能源电力系统频率时空分布特性分析 被引量:14
18
作者 马宁嘉 谢小荣 +2 位作者 孙谊媊 王衡 秦晓辉 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期406-413,共8页
随着新能源和电力电子装备在电力系统中的占比快速提升,系统的频率动态特性发生重大变化。为了研究新能源机组并网对新型电力系统频率时空分布特性的影响:首先,建立了新能源电力系统的频率动态响应解析模型,并分析了频率时空分布特性的... 随着新能源和电力电子装备在电力系统中的占比快速提升,系统的频率动态特性发生重大变化。为了研究新能源机组并网对新型电力系统频率时空分布特性的影响:首先,建立了新能源电力系统的频率动态响应解析模型,并分析了频率时空分布特性的影响因素及新能源并网对该特性的影响机理;其次,讨论了研究频率时空分布特性的必要性及描述该特性的量化指标;最后,基于仿真结果分析了不同电网形态下的频率时空分布特性,并总结了新能源机组并网对该特性的影响规律。 展开更多
关键词 新能源 电力系统 频率响应 时空分布特性 解析模型 量化指标
在线阅读 下载PDF
一种融合时序特征的网络场景识别算法 被引量:2
19
作者 张哲 包德伟 +1 位作者 陶亮 惠维 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第3期141-149,共9页
针对网络场景识别问题,提出了一种基于语义识别改进的树模型识别算法框架,利用语义分析提取网络时序特征,纵向表达用户活动轨迹,可更加直观地表征办公、宿舍和食堂等场景。同时,通过对数据通信物理模型拟合的网络环境特征(设备之间的路... 针对网络场景识别问题,提出了一种基于语义识别改进的树模型识别算法框架,利用语义分析提取网络时序特征,纵向表达用户活动轨迹,可更加直观地表征办公、宿舍和食堂等场景。同时,通过对数据通信物理模型拟合的网络环境特征(设备之间的路损、干扰等)进行识别,获得网络环境内设备的款型、安装的疏密和用户的负载等信息。进而基于决策树模型框架,耦合上述两类特征生成场景识别算法框架。通过耦合网络环境的流量特征及网络规划特征,全局框架具有智能识别网络场景的特点。算法针对多个数据集样本进行验证,证明所提方案均能对不同场景进行有效识别。 展开更多
关键词 实际场景分析 时序特征建模 场景识别 特征融合 树模型
在线阅读 下载PDF
基于慢特征分析的分布式动态工业过程运行状态评价 被引量:2
20
作者 钟林生 常玉清 +1 位作者 王福利 高世红 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期745-757,共13页
现代工业过程通常具有规模大、流程长和工序多的特点,导致传统的集中式建模方法会淹没过程的局部变化信息,从而无法及时识别早期的非优运行状态.此外,闭环控制的广泛应用使得过程变量普遍存在时序相关性.针对以上问题,提出一种基于慢特... 现代工业过程通常具有规模大、流程长和工序多的特点,导致传统的集中式建模方法会淹没过程的局部变化信息,从而无法及时识别早期的非优运行状态.此外,闭环控制的广泛应用使得过程变量普遍存在时序相关性.针对以上问题,提出一种基于慢特征分析(Slow feature analysis, SFA)的分布式动态工业过程运行状态评价方法.首先,结合动态时间规整(Dynamic time warping, DTW)和K-medoids聚类算法对过程进行分解;然后,对每一变量子块建立相应的动态慢特征分析(Dynamic slow feature analysis, DSFA)模型;最后,利用贝叶斯推理获得全局的综合评价指标.通过在数值案例和金湿法冶金过程的仿真应用,验证了该方法的有效性. 展开更多
关键词 分布式模型 运行状态评价 慢特征分析 动态时间规整 K-medoids聚类
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部