期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Population structure and distribution pattern of Taxus cuspidata in Muling region of Heilongjiang Province, China 被引量:10
1
作者 ZU Yuan-gang CHEN Hua-feng WANG Wen-jie NIE Shao-quan 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第1期80-82,共3页
An investigation was conducted on distribution pattern, site condition and population structure of yew Taxus cuspidata Sieb. et Zucc. in Muling Forest Bureau of Heilongjiang Province, China in April, 2005. Results sho... An investigation was conducted on distribution pattern, site condition and population structure of yew Taxus cuspidata Sieb. et Zucc. in Muling Forest Bureau of Heilongjiang Province, China in April, 2005. Results showed that yew is mainly distributed under the main storey of natural mixed forest of conifer and broadleaf, the soil moisture content of the yew site is high (40%-60%), the pH value of soil is relatively lower (4.7-5.5), and that the population structure of wild yew is not rational, belonging to the degeneration population, which is one of the reasons leading to the population decline. Although the site conditions of Muling area are suitable for the growth of wild yew, the population of wild yew shows a decline tendency, due to the fact that the middle-sized adult yew trees have been cut, young yews are often grazed by wildlife, and that the trunks of adult yew tend to be hollow. 展开更多
关键词 Taxus cuspidata Sieb. et Zucc. YEW Population structure spatial distribution pattern Site conditions
在线阅读 下载PDF
Population structure and spatial pattern analysis of Quercus aquifolioides on Sejila Mountain,Tibet,China 被引量:2
2
作者 Zhiqiang Shen Jie Lu +4 位作者 Min Hua Xiaoqin Tang Xingle Qu Jingli Xue Jiangping Fang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期400-409,共10页
Understanding population structure provides basic ecological data related to species and ecosystems.Our objective was to understand the mechanisms involved in the maintenance of Quercus aquifolioides populations.Using... Understanding population structure provides basic ecological data related to species and ecosystems.Our objective was to understand the mechanisms involved in the maintenance of Quercus aquifolioides populations.Using a 1 ha permanent sample plot data for Q.aquifolioides on Sejila Mountain,Tibet Autonomous Region(Tibet),China,we analyzed the population structure of Q.aquifolioides by combining data for diameter class,static life table and survival curve.Simultaneously,the spatial distribution of Q.aquifolioides was studied using Ripley’s L Function in point pattern analysis.The results showed:(1) Individuals in Q.aquifolioides populations were mainly aggregated in the youngest age classes,that accounted for94.3% of the individuals; the older age classes had much smaller populations.Although the youngest age classes(ClassesⅠ and Ⅱ) had fewer individuals than Class Ⅲ,the total number of individuals in classes Ⅰ and Ⅱ was also greater than in classes Ⅳ to Ⅸ.In terms of tree height,fewsaplings,more medium-sized saplings and few large-sized trees were found.The diameter class structure of Q.aquifolioides populations formed an atypical ‘pyramid’type; the population was expanding,but growth was limited,tending toward a stable population.(2) Mortality of Q.aquifolioides increased continuously with age; life expectancy decreased over time,and the survivorship curve was close to a Deevey I curve.(3) The spatial distribution pattern of Q.aquifolioides varied widely across different developmental stages.Saplings and medium-sized tree showed aggregated distributions at the scales of 0–33 m and 0–29 m,respectively.The aggregation intensities of saplings and medium-sized trees at small scales were significantly stronger than that of large-sized trees.However,large-sized trees showed a random distribution at most scales.(4) No correlation was observed among saplings,medium-and large-sized trees at small scales,while a significant and negative association was observed as the scale increased.Strong competition was found among saplings,medium-and large-sized trees,while no significant association was observed between medium-and largesized trees at all scales.Biotic interactions and local ecological characteristics influenced the spatial distribution pattern of Q.aquifolioides populations most strongly. 展开更多
关键词 Point pattern analysis Population structure Quercus aquifolioides Sejila Mountain spatial distribution pattern
在线阅读 下载PDF
A new methodology for estimating forest NPP based on forest in-ventory data——a case study of Chinese pine forest 被引量:6
3
作者 赵敏 周广胜 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期93-100,i001,共9页
Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V... Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V) and climatic factors (mean annual actual evapotranspiration, E) was developed for Chinese pine (Pinus tabulaeformis) forest by making full use of Forest Inventory Data (FID) and dynamically assessing forest productivity. The NPP of Chinese pine forest was estimated by using this model and the fourth FID (1989–1993), and the spatial pattern of NPP of Chinese pine forest was given by Geography Information System (GIS) software. The results indicated that mean NPP value, of Chinese pine forest was 7.82 t m?2·a?1 and varied at the range of 3.32–11.87 t hm?2·a?1. NPP distribution of Chinese pine forests was significantly different in different regions, higher in the south and lower in the north of China. In terms of the main distribution regions of Chinese pine, the NPPs of Chinese pine forest in Shanxi and Shaanxi provinces were in middle level, with an average NPP of 7.4 t hm?2·a?1, that in the southern and the eastern parts (e.g. Shichuang Hunan, Henan, and Liaoning provinces) was higher (over 7.7 t hm?2·a?1), and that in the northern part and western part (e.g. Neimenggu and Ningxia provinces) was lower (below 5 t hm?2·a?1). This study provides an efficient way for using FID to understand the dynamics of foest NPP and evaluate its effects on global climate change. Keywords Forest NPP - Forest inventory data - Chinese pine forest - Climatic and biotic NPP model - Spatial distribution pattern CLC number S727.22 - S757.2 Document code A Foundation item: This study was supported by the National Natural Science Foundation of China (Nos. 30028001, 49905005), National Key Basic Research Specific Foundation (G1999043407); the Chinese Academy of Sciences (KSC2-1-07).Biography: ZHAO Min (1973-), female, Ph. D. in Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P. R. China.Responsible editor: Zhu Hong 展开更多
关键词 Forest NPP Forest inventory data Chinese pine forest Climatic and biotic NPP model spatial distribution pattern
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部