By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integra...By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.展开更多
A spatial channel propagation model is presented. Consider a uniform linear antenna (ULA) at the base station (BS) and narrowband signals transmitted at the mobile. In two types of propagating environments: indoo...A spatial channel propagation model is presented. Consider a uniform linear antenna (ULA) at the base station (BS) and narrowband signals transmitted at the mobile. In two types of propagating environments: indoor and outdoor, performance of low spatial correlation is investigated and some results are provided, which are significant to an,3. lyze the performance of diversity systems and configuration of army. The results also show that the configuration of array with either smaller angular spread or bigger angle of arrival (AOA) dominates the impact on spatial correlation, and that increasing angular spread or decreasing AOA diminishes, or even eliminates this impact.展开更多
Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spa...Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.展开更多
In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat...In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.展开更多
The optimal design of training sequences for channel estimation in multiple-input multiple-output (MIMO) systems under spatially correlated fading is considered. The channel is assumed to be a block-fading model wit...The optimal design of training sequences for channel estimation in multiple-input multiple-output (MIMO) systems under spatially correlated fading is considered. The channel is assumed to be a block-fading model with spatial correlation known at both the transmitter and the receiver. To minimize the channel estimation error, optimal training sequences are designed to exploit full information of the spatial correlation under the criterion of minimum mean square error (MMSE). It is investigated that the spatial correlation is helpful to decrease the estimation error and the proposed training sequences have good performance via simulations.展开更多
文摘By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.
基金This project was supported by the National High-Tech Research and Development Program (2002AA123032).
文摘A spatial channel propagation model is presented. Consider a uniform linear antenna (ULA) at the base station (BS) and narrowband signals transmitted at the mobile. In two types of propagating environments: indoor and outdoor, performance of low spatial correlation is investigated and some results are provided, which are significant to an,3. lyze the performance of diversity systems and configuration of army. The results also show that the configuration of array with either smaller angular spread or bigger angle of arrival (AOA) dominates the impact on spatial correlation, and that increasing angular spread or decreasing AOA diminishes, or even eliminates this impact.
基金supported by "the Twelfth Five-year Civil Aerospace Technologies Pre-Research Program"(D040201)
文摘Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.
基金the National Natural Science Foundation of China (60372055) and the National DoctoralFoundation of China (2003698027).
文摘In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.
基金the National Science Foundation for Distinguished Young Scholars (60725105)the SixthProject of the Key Project of National Nature Science Foundation of China (60496316)+2 种基金the National "863" Project (2007AA012288)the National Nature Science Foundation of China (60572146)the "111" Project (B08038).
文摘The optimal design of training sequences for channel estimation in multiple-input multiple-output (MIMO) systems under spatially correlated fading is considered. The channel is assumed to be a block-fading model with spatial correlation known at both the transmitter and the receiver. To minimize the channel estimation error, optimal training sequences are designed to exploit full information of the spatial correlation under the criterion of minimum mean square error (MMSE). It is investigated that the spatial correlation is helpful to decrease the estimation error and the proposed training sequences have good performance via simulations.