期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
High Quality Audio Object Coding Framework Based on Non-Negative Matrix Factorization 被引量:1
1
作者 Tingzhao Wu Ruimin Hu +2 位作者 Xiaochen Wang Shanfa Ke Jinshan Wang 《China Communications》 SCIE CSCD 2017年第9期32-41,共10页
Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more... Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more and more attentions have been paid to the object-based audio coding. However, existing object-based techniques have poor sound quality because of low parameter frequency domain resolution. In order to achieve high quality audio object coding, we propose a new coding framework with introducing the non-negative matrix factorization(NMF) method. We extract object parameters with high resolution to improve sound quality, and apply NMF method to parameter coding to reduce the high bitrate caused by high resolution. And the experimental results have shown that the proposed framework can improve the coding quality by 25%, so it can provide a better solution to encode audio scene in a more flexible and higher quality way. 展开更多
关键词 object-based AUDIO CODING non-negative matrix factorization AUDIO scenecoding
在线阅读 下载PDF
Improved Variable Forgetting Factor Proportionate RLS Algorithm with Sparse Penalty and Fast Implementation Using DCD Iterations
2
作者 Han Zhen Zhang Fengrui +2 位作者 Zhang Yu Han Yanfeng Jiang Peng 《China Communications》 SCIE CSCD 2024年第10期16-27,共12页
The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms wit... The proportionate recursive least squares(PRLS)algorithm has shown faster convergence and better performance than both proportionate updating(PU)mechanism based least mean squares(LMS)algorithms and RLS algorithms with a sparse regularization term.In this paper,we propose a variable forgetting factor(VFF)PRLS algorithm with a sparse penalty,e.g.,l_(1)-norm,for sparse identification.To reduce the computation complexity of the proposed algorithm,a fast implementation method based on dichotomous coordinate descent(DCD)algorithm is also derived.Simulation results indicate superior performance of the proposed algorithm. 展开更多
关键词 dichotomous coordinate descent proportionate matrix RLS sparse systems variable forgetting factor
在线阅读 下载PDF
基于L_(1/2)稀疏性和峰度平滑约束非负矩阵分解的高光谱图像解混
3
作者 杨国亮 张佳琦 盛杨杨 《现代信息科技》 2025年第5期45-50,共6页
为了解决传统高光谱图像解混方法中存在的解混效率低、计算复杂和易受噪声和异常点影响等问题,提出了一种基于L_(1/2)稀疏性和峰度平滑约束非负矩阵分解(L_(1/2)-KSNMF)的算法。针对高光谱图像中非线性混合情形,该方法首先引入了L_(1/2... 为了解决传统高光谱图像解混方法中存在的解混效率低、计算复杂和易受噪声和异常点影响等问题,提出了一种基于L_(1/2)稀疏性和峰度平滑约束非负矩阵分解(L_(1/2)-KSNMF)的算法。针对高光谱图像中非线性混合情形,该方法首先引入了L_(1/2)范数作为稀疏度度量,提高解混的准确性;引入峰度平滑约束,将空间信息融合到解混模型中,提高解混结果的空间连续性;实验结果表明,该算法在解混准确性和计算效率以及从高光谱数据中提取端元光谱方面都表现出优异的性能。 展开更多
关键词 高光谱图像 非负矩阵分解 L_(1/2)稀疏约束 高光谱图像解混(HU)
在线阅读 下载PDF
基于低秩稀疏矩阵分解与定位窗滤波的混响抑制技术
4
作者 马怀逸 朱代柱 《舰船科学技术》 北大核心 2024年第20期153-158,共6页
在强混响背景下,使用传统的预白化处理、时频分析以及子空间分析等方法对动目标检测效果不佳,针对这一问题,本文利用近年来新引入的低秩稀疏矩阵分解理论来提高强混响背景下的动目标检测能力,采用多帧数据联合的鲁棒PCA处理算法,结合混... 在强混响背景下,使用传统的预白化处理、时频分析以及子空间分析等方法对动目标检测效果不佳,针对这一问题,本文利用近年来新引入的低秩稀疏矩阵分解理论来提高强混响背景下的动目标检测能力,采用多帧数据联合的鲁棒PCA处理算法,结合混响数据的声学特征将声学检测问题转化为图像分解问题,并通过对比PCA算法处理结果,给出算法的性能比较;与此同时,本文结合目标运动连续性和稀疏杂点随机性的特征差异,提出一种定位窗滤波方法,进一步滤除稀疏杂点,净化主动声呐显示图像,提高主动声呐动目标检测性能。仿真及试验数据处理结果说明,在阵元端信混比-5 dB情况下,算法仍然可以对目标准确定位,滤除稀疏杂点,且在时频域上效果更佳,显著提高了主动声呐动目标检测能力。 展开更多
关键词 强混响 动目标检测 低秩稀疏矩阵分解 定位窗滤波
在线阅读 下载PDF
A Novel CCA-NMF Whitening Method for Practical Machine Learning Based Underwater Direction of Arrival Estimation
5
作者 Yun Wu Xinting Li Zhimin Cao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期163-174,共12页
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ... Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions. 展开更多
关键词 direction of arrival(DOA) sonar array data underwater disturbance machine learn-ing canonical correlation analysis(CCA) non-negative matrix factorization(NMF)
在线阅读 下载PDF
一种基于部分基矩阵稀疏约束非负矩阵分解的抵抗大强度剪切攻击视频水印构架 被引量:10
6
作者 同鸣 张伟 +1 位作者 张建龙 陈涛 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1819-1826,共8页
该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视... 该文提出一种部分基矩阵稀疏约束的非负矩阵分解(Non-negative Matrix Factorization with Sparseness Constraints on Parts of the Basis Matrix,NMFSCPBM)方法,其次将水印嵌入在NMFSCPBM分解后的基矩阵大系数中,利用NMFSCPBM提取视频运动特征自适应控制水印嵌入强度。最后,在水印检测时,只要残余视频中包含有视频最小剩余子块数,就可以恢复出完整基矩阵,进而提取出完整水印。实验表明,与同类方法相比,该方法抵抗强剪切攻击的能力获得了较大程度提升。 展开更多
关键词 数字水印 剪切攻击 几何攻击 非负矩阵分解 稀疏约束
在线阅读 下载PDF
线性高光谱解混模型综述 被引量:26
7
作者 袁静 章毓晋 高方平 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2018年第5期553-571,共19页
高光谱遥感技术具有强大的地物探测能力.然而,其空间分辨率低的特点导致光谱图像中存在大量的混合像元,该现象阻碍了高光谱技术的应用和发展.针对米级以下的高光谱图像,线性混合模型能够很好地为混合像元建模.由于其物理上的可释性以及... 高光谱遥感技术具有强大的地物探测能力.然而,其空间分辨率低的特点导致光谱图像中存在大量的混合像元,该现象阻碍了高光谱技术的应用和发展.针对米级以下的高光谱图像,线性混合模型能够很好地为混合像元建模.由于其物理上的可释性以及数学上的可操作性,作为光谱解混基础的线性混合模型受到了广泛关注,为高光谱图像的混合像元解混问题提供了重要的解决思路.然而,由于观测噪声、环境条件、端元变异性和数据集大小等情况的存在,线性解混依然是一个具有挑战性的不适定的逆问题.通过整理近五年的文献资料,分别从非负矩阵分解、原型分析、贝叶斯方法以及稀疏解混四个方面介绍线性解混数学模型的发展现状以及面临的问题. 展开更多
关键词 高光谱图像 光谱解混 综述 矩阵分解 贝叶斯方法 原型分析 稀疏解混
在线阅读 下载PDF
稀疏非负矩阵分解下的遥感图像融合 被引量:7
8
作者 李红 刘芳 张凯 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第2期193-198,共6页
为了降低多光谱图像与全色图像融合过程中的光谱扭曲和空间失真,提出了一种稀疏非负矩阵分解的融合新方法.首先从全色图像学习出一个高分辨字典和相应的低分辨字典,然后构造多光谱图像的稀疏非负矩阵分解模型,在低分辨字典下获得光谱系... 为了降低多光谱图像与全色图像融合过程中的光谱扭曲和空间失真,提出了一种稀疏非负矩阵分解的融合新方法.首先从全色图像学习出一个高分辨字典和相应的低分辨字典,然后构造多光谱图像的稀疏非负矩阵分解模型,在低分辨字典下获得光谱系数矩阵,最后将该系数矩阵与高分辨字典相乘得到融合后的高分辨多光谱图像.稀疏正则项的引入有效克服了标准非负矩阵分解算法的不稳定现象,能够较好地保持图像的光谱信息和空间信息.将该方法应用于快鸟卫星和地球眼卫星数据,与同类方法的对比分析结果显示:该方法能够减少光谱扭曲和空间信息的损失,得到的融合结果在视觉效果和客观评价指标上均优于对比方法. 展开更多
关键词 遥感图像融合 非负矩阵分解 稀疏正则
在线阅读 下载PDF
稀疏诱导流形正则化凸非负矩阵分解算法 被引量:3
9
作者 邱飞岳 陈博文 +1 位作者 陈铁明 章国道 《通信学报》 EI CSCD 北大核心 2020年第5期84-95,共12页
针对非负矩阵分解方法在有噪声的真实数据中获得特征的有效性问题,提出了一种稀疏诱导的流形正则化凸非负矩阵分解算法。所提算法在流形正则化的基础上,向低维子空间的基矩阵添加基于L2,1范数的稀疏约束,构建了乘法更新规则,分析在该规... 针对非负矩阵分解方法在有噪声的真实数据中获得特征的有效性问题,提出了一种稀疏诱导的流形正则化凸非负矩阵分解算法。所提算法在流形正则化的基础上,向低维子空间的基矩阵添加基于L2,1范数的稀疏约束,构建了乘法更新规则,分析在该规则下算法的收敛性,并设计了在低维子空间上不同噪声环境下的聚类实验。K均值聚类实验结果表明,稀疏约束降低了噪声特征在学习中的表达能力,所提算法在不同程度上优于同类8种算法,对噪声有更强的稳健性。 展开更多
关键词 非负矩阵分解 流形正则化 稀疏约束 K均值聚类
在线阅读 下载PDF
一种实用快速非负矩阵分解算法 被引量:6
10
作者 程明松 刘勺连 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第1期151-156,共6页
提出了一种基于快速非负矩阵分解算法的实用新算法.该实用快速非负矩阵分解算法扩展了快速非负矩阵分解算法的约束条件,并且保持了较高的收敛速度,更具一般性和实用性.然后对该新算法进行了一些稀疏非负矩阵分解的扩展应用.数值实验显... 提出了一种基于快速非负矩阵分解算法的实用新算法.该实用快速非负矩阵分解算法扩展了快速非负矩阵分解算法的约束条件,并且保持了较高的收敛速度,更具一般性和实用性.然后对该新算法进行了一些稀疏非负矩阵分解的扩展应用.数值实验显示该实用快速非负矩阵分解算法和快速非负矩阵分解算法具有相近的收敛速度,与其他经典非负矩阵分解算法相比其收敛速度有明显的提高,同时对添加稀疏性约束条件的实验也有很好的效果. 展开更多
关键词 非负矩阵分解 快速非负矩阵分解算法 实用快速非负矩阵分解算法 稀疏非负矩阵分解
在线阅读 下载PDF
利用稀疏非负矩阵分解的大转角SAR成像方法 被引量:2
11
作者 许然 李亚超 邢孟道 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第3期49-55,共7页
提出了一种采用稀疏非负矩阵分解(NMF)的大转角成像方法.首先将全孔径划分为若干相互重叠的子孔径,然后分别使用极坐标格式算法获得不同视角下的子图像,最终采用加入稀疏增强正则项的NMF算法在图像域对子图像进行迭代融合,获得目标增强... 提出了一种采用稀疏非负矩阵分解(NMF)的大转角成像方法.首先将全孔径划分为若干相互重叠的子孔径,然后分别使用极坐标格式算法获得不同视角下的子图像,最终采用加入稀疏增强正则项的NMF算法在图像域对子图像进行迭代融合,获得目标增强和信噪比更高的全孔径综合图像.仿真实验结果验证了该方法的有效性. 展开更多
关键词 合成孔径雷达 非负矩阵分解 稀疏 子孔径 图像融合
在线阅读 下载PDF
非负矩阵分解的一个约束稀疏算法 被引量:3
12
作者 李臣明 张师明 李昌利 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第2期108-111,共4页
针对非负矩阵分解中系数矩阵不够稀疏的问题,提出一个新的约束非负矩阵分解算法。在经典非负矩阵分解的优化函数中施加稀疏性约束,并对分解系数矩阵施加最小相关约束,与此同时对基矩阵施加2-范数约束,在保证非负约束和分解精度的基础上... 针对非负矩阵分解中系数矩阵不够稀疏的问题,提出一个新的约束非负矩阵分解算法。在经典非负矩阵分解的优化函数中施加稀疏性约束,并对分解系数矩阵施加最小相关约束,与此同时对基矩阵施加2-范数约束,在保证非负约束和分解精度的基础上,使分解后得到的矩阵尽可能稀疏,这样可以更加节省存储空间,分解结果更优。对比实验表明,提出的算法具有更好的稀疏性,且实验误差更小。 展开更多
关键词 非负矩阵分解(NMF) 稀疏性 最小相关系数 2-范数
在线阅读 下载PDF
基于动态矩阵分解模型的电影推荐系统研究 被引量:3
13
作者 王璇 杜宇超 +1 位作者 杜军 邹军 《电子器件》 CAS 北大核心 2022年第2期483-489,共7页
推荐系统已成为电子商务企业吸引客户、实现盈利的有效技术支持,它能够根据用户的网络点击数据预测其偏好,做出个性化推荐。研究了一个基于动态矩阵分解模型的NETFLIX电影推荐系统。该系统通过训练一个来自NETFLIX平台、包含9000部电影... 推荐系统已成为电子商务企业吸引客户、实现盈利的有效技术支持,它能够根据用户的网络点击数据预测其偏好,做出个性化推荐。研究了一个基于动态矩阵分解模型的NETFLIX电影推荐系统。该系统通过训练一个来自NETFLIX平台、包含9000部电影历史评分的数据集进行预测评分。核心算法包括运用矩阵分解(Matrix Factorization,MF)建立有效的数据处理模型,以及使用随机梯度下降(Stochastic Gradient Descent,SGD)训练该模型。数据集采用稀疏矩阵存储,以节省空间。在训练过程中,对预测评分增加了特定的偏向值。该系统与市场同类产品相比拥有更高的预测准确度,并向电影观众推荐符合他们喜好的电影,能极大地提高电影观看票房值。 展开更多
关键词 电影推荐系统 动态矩阵分解模型 随机梯度下降算法 稀疏矩阵 预测评分
在线阅读 下载PDF
面向微博的多实体稀疏关系数据联合聚类 被引量:1
14
作者 于淼 杨武 +1 位作者 王巍 申国伟 《通信学报》 EI CSCD 北大核心 2016年第1期151-159,共9页
针对大规模微博中多实体间的稀疏关系数据,提出一种面向多实体稀疏关系数据的高效联合聚类算法。在算法中,为了充分利用多关系数据,提出了一种顽健的约束信息嵌入方法构建关系矩阵,降低了矩阵的稀疏性,进一步提高了算法的准确率。在稀... 针对大规模微博中多实体间的稀疏关系数据,提出一种面向多实体稀疏关系数据的高效联合聚类算法。在算法中,为了充分利用多关系数据,提出了一种顽健的约束信息嵌入方法构建关系矩阵,降低了矩阵的稀疏性,进一步提高了算法的准确率。在稀疏约束的块坐标下降框架下,关系矩阵通过非负矩阵三分解算法同时获得不同实体的聚类指示矩阵。非负矩阵分解过程中,通过高效的投射算法实现快速求解,确保了聚类结果的稀疏结构。在人工和真实数据集上的实验表明,算法在3个指标上都具有明显提高,特别是在极端稀疏数据上的效果更加明显。 展开更多
关键词 微博 多实体稀疏关系 联合聚类 非负矩阵分解 辅助信息嵌入
在线阅读 下载PDF
以非负矩阵分解提取局部特征的SAR目标稀疏表示分类 被引量:2
15
作者 张之光 雷宏 《电讯技术》 北大核心 2016年第5期495-500,共6页
合成孔径雷达(SAR)目标分类是自动目标识别系统的核心功能之一,对于战场监视等应用具有重要意义。利用SAR图像局部散射明显的特点,提出了通过训练样本的非负矩阵分解获得低维数局部特征编码,并以该编码作为字典进行稀疏表示分类的方法... 合成孔径雷达(SAR)目标分类是自动目标识别系统的核心功能之一,对于战场监视等应用具有重要意义。利用SAR图像局部散射明显的特点,提出了通过训练样本的非负矩阵分解获得低维数局部特征编码,并以该编码作为字典进行稀疏表示分类的方法。采用Gotcha项目民用车辆目标的实测数据进行了验证,结果显示在不同信噪比条件下该方法的分类正确率均优于广泛采用的由降采样、随机投影、主成分分析提取低维数特征的稀疏表示分类方法,表明了该方法的性能优势。另外,还通过实验对比分析了非负约束的稀疏表示与标准稀疏表示在分类性能上的差别,结果显示非负约束的稀疏表示导致分类正确率下降,故针对分类问题不宜在稀疏表示时进行非负约束。 展开更多
关键词 合成孔径雷达 稀疏表示 目标分类 非负矩阵分解 局部特征提取
在线阅读 下载PDF
基于子空间结构正则化的L_(21)非负矩阵分解高光谱解混 被引量:4
16
作者 陈善学 刘荣华 《电子与信息学报》 EI CSCD 北大核心 2022年第5期1704-1713,共10页
标准的非负矩阵分解(NMF)应用于高光谱解混时,容易受到噪声和异常值的干扰,解混效果较差。为了提高分解性能,该文将L_(21)范数引入标准的NMF算法中,对模型进行了改进,从而提高算法的鲁棒性。其次,为了提高分解后丰度矩阵的稀疏性,将双... 标准的非负矩阵分解(NMF)应用于高光谱解混时,容易受到噪声和异常值的干扰,解混效果较差。为了提高分解性能,该文将L_(21)范数引入标准的NMF算法中,对模型进行了改进,从而提高算法的鲁棒性。其次,为了提高分解后丰度矩阵的稀疏性,将双重加权稀疏约束引入L_(21)NMF模型中,使其中一个权值提高每个像元对应的丰度向量上的稀疏性,另一个权值提高每个端元对应的丰度向量上的稀疏性。同时,为了利用像元的全局空间分布信息,观察地物在不同图像中的真实分布情况,引入子空间结构正则项,提出了基于子空间结构正则化的L_(21)非负矩阵分解(L_(21)NMF-SSR)算法。通过在模拟数据集和真实数据集与其他经典算法的比较,验证了该算法具有更好的性能,同时具有去噪能力。 展开更多
关键词 高光谱解混 非负矩阵分解 L_(21)范数 双重加权稀疏 子空间结构
在线阅读 下载PDF
基于非负矩阵分解方法的海上交通特征 被引量:1
17
作者 杨家轩 吴京霖 姜大鹏 《中国航海》 CSCD 北大核心 2020年第4期39-45,共7页
船载船舶自动识别系统(Automatic Identification System,AIS)数据属于典型的时空数据,其所包含的船舶空间、时间和其他维度属性数据中蕴含着大量潜在特征。对海量的AIS数据进行联合聚类分析,利用时空数据间的隐含关系分析并提取出海上... 船载船舶自动识别系统(Automatic Identification System,AIS)数据属于典型的时空数据,其所包含的船舶空间、时间和其他维度属性数据中蕴含着大量潜在特征。对海量的AIS数据进行联合聚类分析,利用时空数据间的隐含关系分析并提取出海上交通特征。对研究的数据集进行数据清洗;提取有用的船载AIS数据,对时间、空间和其他属性数据进行切片化标记;选择目标属性数据形成原始矩阵;对原始矩阵进行稀疏约束下的非负矩阵分解,获得时空数据联合聚类的结果,并结合实际进行分析。结果表明:该方法可挖掘出研究水域的船舶行为模式,分析船舶的运动规律,为水上交通安全监管和海上安全保障相关研究提供一种新思路。 展开更多
关键词 时空分析 联合聚类 非负矩阵分解NMF 稀疏约束
在线阅读 下载PDF
矩阵描述的位置控制方法及其存储效率分析
18
作者 张鑫 容晓峰 《西安工业大学学报》 CAS 2014年第3期205-209,共5页
使用计算机实现位置控制时,为了便于程序处理,可利用矩阵对位置点分布及其属性进行描述.将矩阵元素与每一个位置点对应,通过遍历矩阵元素即可对位置点进行处理.根据属性值进行坐标到实际位移量的转化即实现位置控制.存储矩阵时为避免过... 使用计算机实现位置控制时,为了便于程序处理,可利用矩阵对位置点分布及其属性进行描述.将矩阵元素与每一个位置点对应,通过遍历矩阵元素即可对位置点进行处理.根据属性值进行坐标到实际位移量的转化即实现位置控制.存储矩阵时为避免过多占用内存,可以对矩阵进行压缩存储.元素值的特点决定了压缩矩阵时既可以压缩零元也可以压缩非零元,两种压缩法的有效性取决于矩阵稀疏因子的大小.计算结果表明,当矩阵稀疏因子小于25%时应压缩零元,稀疏因子大于75%时应压缩非零元. 展开更多
关键词 位置控制 位置矩阵 压缩存储 稀疏因子
在线阅读 下载PDF
基于稀疏表示的概率子空间聚类人脸识别
19
作者 彭波 谢丽萍 《电视技术》 北大核心 2014年第11期173-176,共4页
针对子空间聚类应用中高达数以百万计信号的数据集合问题,为了实现快速聚类,提出了一种基于稀疏表示的概率子空间聚类算法。首先,每个信号由一个稀疏组合的基本元素(原子)表示,这些原子构成了字典矩阵的列;接着利用稀疏表示集推导出一... 针对子空间聚类应用中高达数以百万计信号的数据集合问题,为了实现快速聚类,提出了一种基于稀疏表示的概率子空间聚类算法。首先,每个信号由一个稀疏组合的基本元素(原子)表示,这些原子构成了字典矩阵的列;接着利用稀疏表示集推导出一个混合模式的原子和信号的共生矩阵;最后,通过共生矩阵的非负矩阵分解(NNMF)得到混合模式的组件,并根据最大似然(ML)准则估算每个信号的子空间。在YaleB人脸数据库上的实验结果表明,与其他几种最先进的方法相比,所提方法取得了较好的聚类精度。 展开更多
关键词 人脸识别 稀疏表示 概率子空间聚类 字典学习 非负矩阵分解
在线阅读 下载PDF
基于体积和稀疏约束的高光谱混合像元分解算法 被引量:6
20
作者 魏一苇 黄世奇 +2 位作者 王艺婷 卢云龙 刘代志 《红外与激光工程》 EI CSCD 北大核心 2014年第4期1247-1254,共8页
针对传统非负矩阵分解法中解空间较大、存在大量局部极小值的问题,提出了一种基于单形体体积和丰度稀疏性约束的非负矩阵分解法(Volume and Sparseness Constrained NMF,VSC-NMF)。该方法首先使用顶点成分分析法对高光谱图像进行端元提... 针对传统非负矩阵分解法中解空间较大、存在大量局部极小值的问题,提出了一种基于单形体体积和丰度稀疏性约束的非负矩阵分解法(Volume and Sparseness Constrained NMF,VSC-NMF)。该方法首先使用顶点成分分析法对高光谱图像进行端元提取,将其作为端元矩阵的初始值,可达到加速算法收敛的目的;然后,在目标函数中加入单形体体积最小化约束和丰度稀疏性约束,从而实现对混合像元进行较好的分解。实验结果表明,该方法不仅能有效地克服传统非负矩阵分解法的缺陷,而且能估计出精确的端元和对应的丰度,获得满意的解混效果,尤其适用于稀疏度较高的高光谱图像。 展开更多
关键词 高光谱图像 混合像元分解 非负矩阵分解 最小体积约束 稀疏约束
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部