期刊文献+
共找到6,879篇文章
< 1 2 250 >
每页显示 20 50 100
Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking
1
作者 AN Qi-chang WANG Kun +2 位作者 LIU Xin-yue LI Hong-wen ZHU Jia-kang 《中国光学(中英文)》 北大核心 2025年第2期401-413,共13页
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ... To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects. 展开更多
关键词 stripe tracking wavefront aberration sparse aperture telescope co-phasing adjustment
在线阅读 下载PDF
Block sparse compressed sensing with frames:Null space property and l_(2)/l_(q)(0
2
作者 WU Fengong ZHONG Penghong QIN Yuehai 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期173-182,共10页
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ... This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise. 展开更多
关键词 Compressed sensing block sparse l2/lq-synthesis method null space property
在线阅读 下载PDF
Hysteresis modeling and compensation of piezo actuator with sparse regression
3
作者 JIN Yu WANG Xucheng +3 位作者 XU Yunlang YU Jianbo LU Qiaodan YANG Xiaofeng 《Journal of Systems Engineering and Electronics》 2025年第1期48-61,共14页
Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuato... Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuators.Existing methods for fitting hysteresis loops include operator class,differential equation class,and machine learning class.The modeling cost of operator class and differential equation class methods is high,the model complexity is high,and the process of machine learning,such as neural network calculation,is opaque.The physical model framework cannot be directly extracted.Therefore,the sparse identification of nonlinear dynamics(SINDy)algorithm is proposed to fit hysteresis loops.Furthermore,the SINDy algorithm is improved.While the SINDy algorithm builds an orthogonal candidate database for modeling,the sparse regression model is simplified,and the Relay operator is introduced for piecewise fitting to solve the distortion problem of the SINDy algorithm fitting singularities.The Relay-SINDy algorithm proposed in this paper is applied to fitting hysteresis loops.Good performance is obtained with the experimental results of open and closed loops.Compared with the existing methods,the modeling cost and model complexity are reduced,and the modeling accuracy of the hysteresis loop is improved. 展开更多
关键词 sparse identification of nonlinear dynamics(SINDy) hysteresis loop relay operator sparse regression piezo actuator
在线阅读 下载PDF
SparseMode:用于高效SpMV向量化代码生成的稀疏编译框架
4
作者 王昊天 丁岩 +2 位作者 何贤浩 肖国庆 阳王东 《计算机研究与发展》 北大核心 2025年第6期1443-1454,共12页
稀疏矩阵向量乘法(sparse matrix-vector multiplication,SpMV)是数值计算中的核心操作,广泛应用于科学计算、工程模拟以及机器学习中.SpMV的性能优化主要受限于不规则的稀疏模式,传统的优化通常依赖手动设计存储格式、计算策略和内存... 稀疏矩阵向量乘法(sparse matrix-vector multiplication,SpMV)是数值计算中的核心操作,广泛应用于科学计算、工程模拟以及机器学习中.SpMV的性能优化主要受限于不规则的稀疏模式,传统的优化通常依赖手动设计存储格式、计算策略和内存访问模式.现有张量编译器如TACO和TVM通过领域特定语言(domain specific language,DSL)可实现高性能算子生成,减轻开发人员繁琐的手动优化工作,但对稀疏计算的优化支持尚显不足,难以根据不同的稀疏模式自适应优化性能.为了解决这些问题,提出了名为SparseMode的稀疏编译框架,能够依据矩阵的稀疏模式为SpMV计算生成高效的向量化代码,并根据硬件平台的特性自适应地调整优化策略.该编译框架首先设计了领域专属语言SpMV-DSL,能够简洁高效地表达SpMV的稀疏矩阵和计算操作.然后提出了基于稀疏模式感知的方法,根据SpMV-DSL定义的矩阵存储格式和非零元素分布动态选择计算策略.最后通过稀疏模式分析和调度优化生成高效并行的SpMV算子代码,以充分利用SIMD指令提升性能.在不同硬件平台上的SpMV实验结果表明,SparseMode生成的SpMV算子代码相较于现有的TACO和TVM张量编译器实现了最高2.44倍的加速比. 展开更多
关键词 稀疏矩阵向量乘法 编译器 稀疏模式 高性能计算 向量化
在线阅读 下载PDF
特征增强的Sparse Transformer目标跟踪算法
5
作者 张丽君 李建民 +1 位作者 侯文 王洁 《电光与控制》 CSCD 北大核心 2024年第5期18-23,共6页
针对Transformer的自注意力机制计算量大、容易被背景分心,导致有效信息抓取不足,从而降低跟踪性能的问题,提出特征增强的Sparse Transformer目标跟踪算法。基于孪生网络骨干进行特征提取;特征增强模块利用多尺度特征图生成的上下文信息... 针对Transformer的自注意力机制计算量大、容易被背景分心,导致有效信息抓取不足,从而降低跟踪性能的问题,提出特征增强的Sparse Transformer目标跟踪算法。基于孪生网络骨干进行特征提取;特征增强模块利用多尺度特征图生成的上下文信息,增强目标局部特征;利用Sparse Transformer的最相关特性生成目标聚焦特征,并嵌入位置编码提升跟踪定位的精度。提出的跟踪模型以端到端的方式进行训练,在OTB100,VOT2018和LaSOT等5个数据集上进行了大量实验,实验结果表明所提算法取得了较好的跟踪性能,实时跟踪速度为34帧/s。 展开更多
关键词 目标跟踪 注意力机制 TRANSFORMER sparse Transformer
在线阅读 下载PDF
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
6
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
在线阅读 下载PDF
Design and implementation of code acquisition using sparse Fourier transform
7
作者 ZHANG Chen WANG Jian +1 位作者 FAN Guangteng TIAN Shiwei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1063-1072,共10页
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ... Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability. 展开更多
关键词 code acquisition hardware structure sparse Fourier transform(SFT) code phase estimation Doppler frequency estimation
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
8
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
基于Sparse K-SVD学习字典的语音增强方法 被引量:9
9
作者 黄玲 李琳 +2 位作者 王薇 易才钦 郭东辉 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期36-40,共5页
摘要:提出一种基于SparseK-SVD学习字典的语音增强方法,采用SparseK-SVD算法自适应地训练一个可稀疏表示的冗余字典,在该冗余字典上采用正交匹配追踪(OMP)算法对带噪语音信号进行稀疏分解,利用稀疏系数矩阵重构纯净语音,实现语... 摘要:提出一种基于SparseK-SVD学习字典的语音增强方法,采用SparseK-SVD算法自适应地训练一个可稀疏表示的冗余字典,在该冗余字典上采用正交匹配追踪(OMP)算法对带噪语音信号进行稀疏分解,利用稀疏系数矩阵重构纯净语音,实现语音增强.使用NOIZEUS语音库进行了一系列的语音增强实验,主客观评测数据表明,基于稀疏表示的语音增强方法(分别使用SparseKSVD和K-SVD训练字典)相对于传统语音增强方法(小阈值波法、谱减法、改进谱减法)可进一步改善语音质量;对字典训练时间进行统计,发现SparseK-SVD算法训练字典消耗的时间为K-SVD算法训练时间的1/6~1/10,大幅度提高了计算效率. 展开更多
关键词 稀疏表示 sparse K SVD 自适应字典 语音增强
在线阅读 下载PDF
基于Sparse ICP的三维点云耳廓识别 被引量:5
10
作者 王森 王璐 +2 位作者 洪靖惠 李思慧 孙晓鹏 《图学学报》 CSCD 北大核心 2015年第6期862-867,共6页
提出一种新颖的三维耳廓识别方法,首先基于PCA和SVD分解对三维耳廓点云模型进行归一化预处理,以统一数据库中所有耳廓点云模型的位置与姿态;然后基于Iannarelli分类系统提取三维耳廓的4个局部特征区域,并利用Sparse ICP算法对局部特征... 提出一种新颖的三维耳廓识别方法,首先基于PCA和SVD分解对三维耳廓点云模型进行归一化预处理,以统一数据库中所有耳廓点云模型的位置与姿态;然后基于Iannarelli分类系统提取三维耳廓的4个局部特征区域,并利用Sparse ICP算法对局部特征区域进行匹配;最后根据局部特征区域中对应点间的距离判断耳廓之间的差异测度,实现耳廓形状识别。实验证明,本文算法与其他算法相比具有较高的识别精度和识别效率。 展开更多
关键词 耳廓识别 PCA Iannarelli 局部特征 sparse ICP
在线阅读 下载PDF
基于改进Sparse Indexing的多负载消冗方法
11
作者 王灿 秦志光 +1 位作者 杨磊 杨皓 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第5期734-739,共6页
针对现有的Sparse Indexing方法不能有效处理小文件备份负载的问题,提出了一种以Broder扩展定理为理论依据的最小特征采样算法,该算法可以对不同形式的备份负载进行有效的特征采样。在此算法的基础上,设计了一种多负载重复数据消除方法... 针对现有的Sparse Indexing方法不能有效处理小文件备份负载的问题,提出了一种以Broder扩展定理为理论依据的最小特征采样算法,该算法可以对不同形式的备份负载进行有效的特征采样。在此算法的基础上,设计了一种多负载重复数据消除方法,该方法通过对备份负载进行特征采样,仅在内存中维护完整索引的一个很小的子集,并通过批量读入分块标识符,摊销了磁盘访问开销,提高了吞吐量。实验结果表明,该方法对混合备份负载的压缩比是Sparse Indexing的2.04倍,而吞吐量与Sparse Indexing相当。该方法适用于需要处理多种形式备份负载的高性能重复数据消除系统。 展开更多
关键词 重复数据消除 磁盘瓶颈 最小特征采样 稀疏索引 吞吐量
在线阅读 下载PDF
基于sparse group Lasso方法的脑功能超网络构建与特征融合分析 被引量:7
12
作者 李瑶 赵云芃 +3 位作者 李欣芸 刘志芬 陈俊杰 郭浩 《计算机应用》 CSCD 北大核心 2020年第1期62-70,共9页
功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题... 功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题,引入sparse group Lasso(sgLasso)方法进一步改善超网络的创建。首先,利用sgLasso方法进行超网络创建;然后,引入两组超网络特有的属性指标进行特征提取以及特征选择,这些指标分别是基于单一节点的聚类系数和基于一对节点的聚类系数;最后,将特征选择后得到的两组有显著差异的特征通过多核学习进行特征融合和分类。实验结果表明,所提方法经过多特征融合取得了87.88%的分类准确率。该结果表明为了改善脑功能超网络的创建,需要考虑到组信息,但不能逼迫使用整组信息,可以适当地对组结构进行扩展。 展开更多
关键词 超网络 sparse GROUP Lasso 基于一对节点的聚类系数 多核学习 抑郁症 机器学习
在线阅读 下载PDF
A fast decoupled ISAR high-resolution imaging method using structural sparse information under low SNR 被引量:6
13
作者 XIANG Long LI Shaodong +2 位作者 YANG Jun CHEN Wenfeng XIANG Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期492-503,共12页
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp... Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition. 展开更多
关键词 sparse recovery inverse synthetic APERTURE radar (ISAR) imaging HIGH-RESOLUTION signal to noise ratio (SNR) STRUCTURAL sparse INFORMATION
在线阅读 下载PDF
Infrared small target detection using sparse representation 被引量:12
14
作者 Jiajia Zhao ZhengyuanTang +1 位作者 Jie Yang Erqi Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期897-904,共8页
Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small... Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results. 展开更多
关键词 target detection sparse representation orthogonal matching pursuit(OMP).
在线阅读 下载PDF
SAR imaging method based on coprime sampling and nested sparse sampling 被引量:3
15
作者 Hongyin Shi Baojing Jia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1222-1228,共7页
As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data tr... As the signal bandwidth and the number of channels increase, the synthetic aperture radar (SAR) imaging system produces huge amount of data according to the Shannon-Nyquist theorem, causing a huge burden for data transmission. This paper concerns the coprime sampl which are proposed recently but ng and nested sparse sampling, have never been applied to real world for target detection, and proposes a novel way which utilizes these new sub-Nyquist sampling structures for SAR sampling in azimuth and reconstructs the data of SAR sampling by compressive sensing (CS). Both the simulated and real data are processed to test the algorithm, and the results indicate the way which combines these new undersampling structures and CS is able to achieve the SAR imaging effectively with much less data than regularly ways required. Finally, the influence of a little sampling jitter to SAR imaging is analyzed by theoretical analysis and experimental analysis, and then it concludes a little sampling jitter have no effect on image quality of SAR. 展开更多
关键词 synthetic aperture radar (SAR) imaging compressivesensing coprime sampling nested sparse sampling.
在线阅读 下载PDF
Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method 被引量:9
16
作者 Xiang Wang Zhitao Huang Yiyu Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期17-25,共9页
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time... This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation. 展开更多
关键词 underdetermined blind source separation (UBSS)time-frequency (TF) domain sparse representation methoditerative adaptive approach direction-of-arrival (DOA) estimationclustering validation.
在线阅读 下载PDF
Pre-detection and dual-dictionary sparse representation based face recognition algorithm in non-sufficient training samples 被引量:2
17
作者 ZHAO Jian ZHANG Chao +3 位作者 ZHANG Shunli LU Tingting SU Weiwen JIA Jian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期196-202,共7页
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos... Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR). 展开更多
关键词 face recognition facial pose pre-recognition(FPPR) dual-dictionary sparse representation method machine learning
在线阅读 下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
18
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
在线阅读 下载PDF
Abnormal behavior detection by causality analysis and sparse reconstruction 被引量:1
19
作者 WANG Jun XIA Li-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2842-2852,共11页
A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were ... A new approach for abnormal behavior detection was proposed using causality analysis and sparse reconstruction. To effectively represent multiple-object behavior, low level visual features and causality features were adopted. The low level visual features, which included trajectory shape descriptor, speeded up robust features and histograms of optical flow, were used to describe properties of individual behavior, and causality features obtained by causality analysis were introduced to depict the interaction information among a set of objects. In order to cope with feature noisy and uncertainty, a method for multiple-object anomaly detection was presented via a sparse reconstruction. The abnormality of the testing sample was decided by the sparse reconstruction cost from an atomically learned dictionary. Experiment results show the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases for abnormal behavior detection. 展开更多
关键词 ABNORMAL behavior detection GRANGER CAUSALITY test CAUSALITY FEATURE sparse RECONSTRUCTION
在线阅读 下载PDF
Power-line interference suppression of MT data based on frequency domain sparse decomposition 被引量:8
20
作者 TANG Jing-tian LI Guang +3 位作者 ZHOU Cong LI Jin LIU Xiao-qiong ZHU Hui-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2150-2163,共14页
Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although tr... Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results. 展开更多
关键词 sparse representation magnetotelluric signal processing power-line noise improved orthogonal matching pursuit redundant dictionary
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部