A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equatio...A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equations that are solved simultaneously to predict the performances of the engines. The dynamic analysis performed consists of an evaluation of the frictional force and load force introduced by the generator. The thermodynamic analysis used a single zone model to describe the engine' s working cycle which includes intake, scavenging, compression, combustion and expansion, and to evaluate the effect of heat transfer based on the first law of thermodynamics and the ideal gas state equation. Because there is no crankshaft, a time based Wiebe equation was used to express the fraction of fuel burned in the combustion. The calculated results were validated by using the experimental data from another research group. The results indicate that the free-piston generator has some advantages over conventional engines.展开更多
An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious ...An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.展开更多
An engine cyclic variation model has been built by using the residual gas temperature for the n th cycle as the input of the model, through constant pressure intake process, adiabatic compression process, constan...An engine cyclic variation model has been built by using the residual gas temperature for the n th cycle as the input of the model, through constant pressure intake process, adiabatic compression process, constant volume combustion process, adiabatic expansion process, adiabatic blow down process and constant pressure exhaust process to approximate the thermodynamic processes in the cylinder, finally the residual gas temperature for the ( n+1) th cycle can be estimated. Because of the adding of engine operating parameters such as engine speed, spark advance, equivalence ratio, intake air pressure, intake air temperature to the model, effects of these parameters on cyclic variation can be estimated quantitatively. Since residual gas temperature fluctuation between cycles reflects the circumstances of engine cyclic variation, parameters to which residual gas temperature is sensitive are most likely used as the means to control cyclic variation. Model simulation shows that for the nearly stiochiometric mixture, cyclic variation is not obvious or even quite stable, but for the lean mixture, under the circumstances of partial load and larger spark advances, engine cyclic variations occur chaotically or with bifurcation.展开更多
In this paper,the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a doubletube experiment system.The two tubes had the sam...In this paper,the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a doubletube experiment system.The two tubes had the same structure,and their closed ends were installed with a plasma generator and a spark plug,respectively.The propagation characteristics of the flame were measured by pressure sensors and ion probes.The experiment results show that,compared with a spark plug,the non-thermal plasma obviously broadened the range of equivalence ratio when the detonation wave could develop successfully,it also heightened the pressure value of detonation wave.Meanwhile,the detonation wave development time and the entire flame propagation time were reduced by half.All of these advantages benefited from the larger ignition volume when a non-thermal plasma was applied.展开更多
An experimental investigation was conducted on combustion characteristics of a single cylinder spark ignition engine fueled with coal-mine methane (CMM).The CMM was simulated by the compressed nature gas (CNG)/nit...An experimental investigation was conducted on combustion characteristics of a single cylinder spark ignition engine fueled with coal-mine methane (CMM).The CMM was simulated by the compressed nature gas (CNG)/nitrogen blend fuels.The cylinder pressure was measured.The maximum heat release ratio,the flame development duration and the main combustion duration were analyzed with the nitrogen volume fraction in the blends changing from 0% to 35%.The results indicate that the maximum cylinder pressure,the maximum rate of pressure,the flame development duration and the main combustion duration increase and the maximum rate of heat release decreases with increasing nitrogen fraction.When the level of nitrogen volume fraction in coalmine methane is lower than 20%,the combustion process of engine is stable.But with the level of nitrogen volume fraction over 30%,the cycle to cycle combustion variation is large,especially under low load condition.展开更多
Concerns about environmental pollution and energy shortages have increased worldwide. One approach to reduce CO2 emissions from gasoline engines is to achieve stratified charge combustion with various injection ratios...Concerns about environmental pollution and energy shortages have increased worldwide. One approach to reduce CO2 emissions from gasoline engines is to achieve stratified charge combustion with various injection ratios using port fuel injection (PFI) and direct injection. The combustion and emission characteristics of a 4-valve direct injection spark ignition (DISI) engine equipped with a dual injection system were investigated while the injection ratio was varied. When the direct injection ratio increased, the lean limit A/F was extended. This suggests that the dual injection gasoline engine with both PFI and direct injection can meet severe vehicle emission and fuel economy requirements. The dual injection system had higher combustion pressure than that of either a conventional or direct injection systems. Therefore, the engine power of a dual injection DISI engine would be higher than that of a single injection DISI engine. However, NOx emissions increased compared with the emission levels in both PFI and DISI systems.展开更多
High-power precise delay trigger/ignition system is a programmable pulse generator developed for experiment controlling in explosively driven magnetic flux compression generators. Precise delay pulses are generated by...High-power precise delay trigger/ignition system is a programmable pulse generator developed for experiment controlling in explosively driven magnetic flux compression generators. Precise delay pulses are generated by the digital circuit, after being magnified and sharpened through multistage isolated amplifiers and rising edge sharpening device, high-voltage steep delay pulses with precision less than μs level are obtained. This system has been used in our compact magnetic flux compression generator experiments in place of the traditional primaeord delay device.展开更多
文摘A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equations that are solved simultaneously to predict the performances of the engines. The dynamic analysis performed consists of an evaluation of the frictional force and load force introduced by the generator. The thermodynamic analysis used a single zone model to describe the engine' s working cycle which includes intake, scavenging, compression, combustion and expansion, and to evaluate the effect of heat transfer based on the first law of thermodynamics and the ideal gas state equation. Because there is no crankshaft, a time based Wiebe equation was used to express the fraction of fuel burned in the combustion. The calculated results were validated by using the experimental data from another research group. The results indicate that the free-piston generator has some advantages over conventional engines.
文摘An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.
文摘An engine cyclic variation model has been built by using the residual gas temperature for the n th cycle as the input of the model, through constant pressure intake process, adiabatic compression process, constant volume combustion process, adiabatic expansion process, adiabatic blow down process and constant pressure exhaust process to approximate the thermodynamic processes in the cylinder, finally the residual gas temperature for the ( n+1) th cycle can be estimated. Because of the adding of engine operating parameters such as engine speed, spark advance, equivalence ratio, intake air pressure, intake air temperature to the model, effects of these parameters on cyclic variation can be estimated quantitatively. Since residual gas temperature fluctuation between cycles reflects the circumstances of engine cyclic variation, parameters to which residual gas temperature is sensitive are most likely used as the means to control cyclic variation. Model simulation shows that for the nearly stiochiometric mixture, cyclic variation is not obvious or even quite stable, but for the lean mixture, under the circumstances of partial load and larger spark advances, engine cyclic variations occur chaotically or with bifurcation.
基金supported by National Natural Science Foundation of China(No.51176001)
文摘In this paper,the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a doubletube experiment system.The two tubes had the same structure,and their closed ends were installed with a plasma generator and a spark plug,respectively.The propagation characteristics of the flame were measured by pressure sensors and ion probes.The experiment results show that,compared with a spark plug,the non-thermal plasma obviously broadened the range of equivalence ratio when the detonation wave could develop successfully,it also heightened the pressure value of detonation wave.Meanwhile,the detonation wave development time and the entire flame propagation time were reduced by half.All of these advantages benefited from the larger ignition volume when a non-thermal plasma was applied.
基金Sponsored by the National Natural Science Foundation of China (50976012)
文摘An experimental investigation was conducted on combustion characteristics of a single cylinder spark ignition engine fueled with coal-mine methane (CMM).The CMM was simulated by the compressed nature gas (CNG)/nitrogen blend fuels.The cylinder pressure was measured.The maximum heat release ratio,the flame development duration and the main combustion duration were analyzed with the nitrogen volume fraction in the blends changing from 0% to 35%.The results indicate that the maximum cylinder pressure,the maximum rate of pressure,the flame development duration and the main combustion duration increase and the maximum rate of heat release decreases with increasing nitrogen fraction.When the level of nitrogen volume fraction in coalmine methane is lower than 20%,the combustion process of engine is stable.But with the level of nitrogen volume fraction over 30%,the cycle to cycle combustion variation is large,especially under low load condition.
基金supported by the Industrial Strategic Technology Development Program, 10042559‘Development of fuel injector for 200 bar gasoline direct injection system’ funded by the Ministry of Trade, Industry & Energy (MI, Korea)
文摘Concerns about environmental pollution and energy shortages have increased worldwide. One approach to reduce CO2 emissions from gasoline engines is to achieve stratified charge combustion with various injection ratios using port fuel injection (PFI) and direct injection. The combustion and emission characteristics of a 4-valve direct injection spark ignition (DISI) engine equipped with a dual injection system were investigated while the injection ratio was varied. When the direct injection ratio increased, the lean limit A/F was extended. This suggests that the dual injection gasoline engine with both PFI and direct injection can meet severe vehicle emission and fuel economy requirements. The dual injection system had higher combustion pressure than that of either a conventional or direct injection systems. Therefore, the engine power of a dual injection DISI engine would be higher than that of a single injection DISI engine. However, NOx emissions increased compared with the emission levels in both PFI and DISI systems.
基金the Ministerial Level Advanced Research Foundation(40407010305)
文摘High-power precise delay trigger/ignition system is a programmable pulse generator developed for experiment controlling in explosively driven magnetic flux compression generators. Precise delay pulses are generated by the digital circuit, after being magnified and sharpened through multistage isolated amplifiers and rising edge sharpening device, high-voltage steep delay pulses with precision less than μs level are obtained. This system has been used in our compact magnetic flux compression generator experiments in place of the traditional primaeord delay device.