For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The propose...For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.展开更多
In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into s...In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.展开更多
The effect of source size and emission time on the proton-proton(p-p)momentum correlation function(Cpp(q))has been studied systematically.Assuming a spherical Gaussian source with space and time profile according to t...The effect of source size and emission time on the proton-proton(p-p)momentum correlation function(Cpp(q))has been studied systematically.Assuming a spherical Gaussian source with space and time profile according to the function S(r,t)~exp(-r2/2 r02-t/τ)in the correlation function calculation code(CRAB),the results indicate that one Cpp(q)distribution corresponds to a unique combination of source size r0 and emission timeτ.Considering the possible nuclear deformation from a spherical nucleus,an ellipsoidal Gaussian source characterized by the deformation parameter∈=ΔR/R has been simulated.There is almost no difference of Cpp(q)between the results of spherically and ellipsoidally shaped sources with small deformation.These results indicate that a unique source size r0 and emission time could be extracted from the p-p momentum correlation function,which is especially important for identifying the mechanism of twoproton emission from proton-rich nuclei.Furthermore,considering the possible existence of cluster structures within a nucleus,the double Gaussian source is assumed.The results show that the p-p momentum correlation function for a source with or without cluster structures has large systematical differences with the variance of r0 andτ.This may provide a possible method for experimentally observing the cluster structures in proton-rich nuclei.展开更多
This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity cor...This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity correlation function of one mode gets faster with decreasing values of relevant parameters, i.e., the coupling constant ξ, the cross-correlation coefficient A, the difference of the pump parameters Aa and the pump parameter al; however, its variations get complex in the other mode when relevant parameters are changed. The investigating results also show that the effects of the mode competition on intensity correlation function are obvious.展开更多
In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as t...In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as the correlation function. We estimate the exponent of spin correlation function for the fully frustrated model and spin glass. In this paper an overview of the latest results on the spin correlation function is presented.展开更多
A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function...A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.展开更多
The effects of time delay on the fluctuation properties of a bistable system are investigated by simulating its normalised correlation function C(s). Three cases including linear delay, cubic delay and global delay ...The effects of time delay on the fluctuation properties of a bistable system are investigated by simulating its normalised correlation function C(s). Three cases including linear delay, cubic delay and global delay in the system are considered respectively. The simulation results indicate that the linear delay enhances the fluctuation of the system (reduces the stability of the system) while the cubic delay and global delay weaken it (enforce the stability of the system), and the effect of cubic delay is more pronounced than the linear delay and global delay.展开更多
The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various...The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various methods for calculating local and nonlocal M-particle correlation functions, momentum distribution, and static structure factor. In particular, using the Bethe ansatz wave function of the strong coupling Lieb-Liniger model, we analytically calculate the two-point correlation function, the large moment tail of the momentum distribution, and the static structure factor of the model in terms of the fractional statistical parameter a = 1 - 2/γ, where γ, is the dimensionless interaction strength. We also discuss the Tan's adiabatic relation and other universal relations for the strongly repulsive Lieb-Liniger model in terms of the fractional statistical parameter.展开更多
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and ...The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.展开更多
We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation...We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exeiton photon is not spectrally distinguishable from the biexciton photon, and either of them can trigger the %tart' in a Hanbury-Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton, the photon statistics will become asymmetric and a cross-bunching lineshape can be obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of g(2)(τ) correlation function measurements.展开更多
In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potentia...In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.展开更多
This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is ...This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is derived for the distribution of the surplus immediately before ruin, for the distribution of the surplus immediately after ruin and the joint distribution of the surplus immediately before and after ruin. The asymptotic property of these ruin functions is also investigated.展开更多
In the paper we introduce an idea of harmonic functions with correlated coefficients which generalize the ideas of harmonic functions with negative coefficients introduced by Silverman and harmonic functions with vary...In the paper we introduce an idea of harmonic functions with correlated coefficients which generalize the ideas of harmonic functions with negative coefficients introduced by Silverman and harmonic functions with varying coefficients defined by Jahangiri and Silverman. Next we define classes of harmonic functions with correlated coefficients in terms of generalized Dziok-Srivastava operator. By using extreme points theory, we obtain estimations of classical convex functionals on the defined classes of functions. Some applications of the main results are also considered.展开更多
The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary l...The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.展开更多
The compact spectrometer for heavy ion experiment(CSHINE)is under construction for the study of isospin chronology via the Hanbury Brown–Twiss(HBT)particle correlation function and the nuclear equation of state of as...The compact spectrometer for heavy ion experiment(CSHINE)is under construction for the study of isospin chronology via the Hanbury Brown–Twiss(HBT)particle correlation function and the nuclear equation of state of asymmetrical nuclear matter.The CSHINE consists of silicon strip detector(SSD)telescopes and large-area parallel-plate avalanche counters,which measure the light charged particles and fission fragments,respectively.In phase I,two SSD telescopes were used to observe 30 MeV/u 40Ar?197Au reactions.The results presented here demonstrate that hydrogen and helium were observed with high isotopic resolution,and the HBT correlation functions of light charged particles could be constructed from the obtained data.展开更多
In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads o...In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.展开更多
Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model i...Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.展开更多
This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity corre...This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity correlation function C(τ) and the associated relaxation time T(C) in the case of a stable locked phase resulting from the cross-correlation λq between the real and imaginary parts of quantum noise. Based on numerical computations it finds that the presence of cross correlations between the real and imaginary parts of quantum noise slow down the decay of intensity fluctuation, i.e., it causes the increase of intensity fluctuation.展开更多
We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents...We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.展开更多
There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section...There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section 2, we prove that any BCDSTRE must be a Markov chain in time random environment when we consider the distribution of the particles in space as a random element. In Section 3, we calculate the first-order moments and the second-order moments of BCDSTRE.展开更多
基金Project supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(Grant No.GZC20231050)the National Natural Science Foundation of China(Grant Nos.12175193 and 11905183)the 13th Five-year plan for Education Science Funding of Guangdong Province(Grant No.2021GXJK349)。
文摘For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.
基金supported in part by National Natural Science Foundation of China under Grants(61525101,61227801 and 61601055)in part by the National Key Technology R&D Program of China under Grant 2015ZX03002008
文摘In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.
基金supported by the National Key R&D Program of China(No.2018YFA0404404)the National Natural Science Foundation of China(Nos.11925502,11935001,11961141003,11421505,11475244,and 11927901)+2 种基金the Shanghai Development Foundation for Science and Technology(No.19ZR1403100)the Strategic Priority Research Program of the CAS(No.XDB34030000)the Key Research Program of Frontier Sciences of the CAS(No.QYZDJ-SSW-SLH002).
文摘The effect of source size and emission time on the proton-proton(p-p)momentum correlation function(Cpp(q))has been studied systematically.Assuming a spherical Gaussian source with space and time profile according to the function S(r,t)~exp(-r2/2 r02-t/τ)in the correlation function calculation code(CRAB),the results indicate that one Cpp(q)distribution corresponds to a unique combination of source size r0 and emission timeτ.Considering the possible nuclear deformation from a spherical nucleus,an ellipsoidal Gaussian source characterized by the deformation parameter∈=ΔR/R has been simulated.There is almost no difference of Cpp(q)between the results of spherically and ellipsoidally shaped sources with small deformation.These results indicate that a unique source size r0 and emission time could be extracted from the p-p momentum correlation function,which is especially important for identifying the mechanism of twoproton emission from proton-rich nuclei.Furthermore,considering the possible existence of cluster structures within a nucleus,the double Gaussian source is assumed.The results show that the p-p momentum correlation function for a source with or without cluster structures has large systematical differences with the variance of r0 andτ.This may provide a possible method for experimentally observing the cluster structures in proton-rich nuclei.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10865006)the Natural Science Foundation of Yunnan Province of China (Grant No. 2005A0002M)
文摘This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity correlation function of one mode gets faster with decreasing values of relevant parameters, i.e., the coupling constant ξ, the cross-correlation coefficient A, the difference of the pump parameters Aa and the pump parameter al; however, its variations get complex in the other mode when relevant parameters are changed. The investigating results also show that the effects of the mode competition on intensity correlation function are obvious.
基金supported by the Department of Mathematics,Faculty of Science,Mahidol University,Thailand
文摘In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as the correlation function. We estimate the exponent of spin correlation function for the fully frustrated model and spin glass. In this paper an overview of the latest results on the spin correlation function is presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674172 and 10874229)
文摘A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.
基金Project supported by the National Natural Science Foundation of China(Grant No.10865006)the Science Foundation of Yunnan University(Grant No.2009A01z)the Graduate Science Foundation of Yunnan University(Grant No.ynuy200926)
文摘The effects of time delay on the fluctuation properties of a bistable system are investigated by simulating its normalised correlation function C(s). Three cases including linear delay, cubic delay and global delay in the system are considered respectively. The simulation results indicate that the linear delay enhances the fluctuation of the system (reduces the stability of the system) while the cubic delay and global delay weaken it (enforce the stability of the system), and the effect of cubic delay is more pronounced than the linear delay and global delay.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374331 and 11534014)the National Key R&D Program of China(Grant No.2017YFA0304500)partially supported by CAS-TWAS President’s Fellowship for International PhD Students
文摘The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various methods for calculating local and nonlocal M-particle correlation functions, momentum distribution, and static structure factor. In particular, using the Bethe ansatz wave function of the strong coupling Lieb-Liniger model, we analytically calculate the two-point correlation function, the large moment tail of the momentum distribution, and the static structure factor of the model in terms of the fractional statistical parameter a = 1 - 2/γ, where γ, is the dimensionless interaction strength. We also discuss the Tan's adiabatic relation and other universal relations for the strongly repulsive Lieb-Liniger model in terms of the fractional statistical parameter.
基金supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We report the observed photon bunching statistics of biexciton cascade emission at zero time delay in single quantum dots by second-order correlation function g(2) (T) measurements under continuous wave excitation. It is found that the bunching phenomenon is independent of the biexciton binding energy when it varies from 0.59 meV to nearly zero. The photon bunching takes place when the exeiton photon is not spectrally distinguishable from the biexciton photon, and either of them can trigger the %tart' in a Hanbury-Brown and Twiss setup. However, if the exciton energy is spectrally distinguishable from the biexciton, the photon statistics will become asymmetric and a cross-bunching lineshape can be obtained. The theoretical calculations based on a model of three-level rate-equation analysis are consistent with the result of g(2)(τ) correlation function measurements.
基金The project was supported by the Fund for Scientific Research in Flanders (FWO-Vlaanderen) for Research Grant G021115N.
文摘In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.
基金This work was supported in part by the National Natural Science Foundation of China (10071058, 70273029) the Ministry of Education of China.
文摘This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is derived for the distribution of the surplus immediately before ruin, for the distribution of the surplus immediately after ruin and the joint distribution of the surplus immediately before and after ruin. The asymptotic property of these ruin functions is also investigated.
基金supported by the Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge,University of Rzeszów
文摘In the paper we introduce an idea of harmonic functions with correlated coefficients which generalize the ideas of harmonic functions with negative coefficients introduced by Silverman and harmonic functions with varying coefficients defined by Jahangiri and Silverman. Next we define classes of harmonic functions with correlated coefficients in terms of generalized Dziok-Srivastava operator. By using extreme points theory, we obtain estimations of classical convex functionals on the defined classes of functions. Some applications of the main results are also considered.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006 and 11272233)the National Key Basic Research and Development Program of China(Grant No.2012CB720101)
文摘The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.
基金This work was supported by the National Natural Science Foundation of China(Nos.11875174 and 11961131010)。
文摘The compact spectrometer for heavy ion experiment(CSHINE)is under construction for the study of isospin chronology via the Hanbury Brown–Twiss(HBT)particle correlation function and the nuclear equation of state of asymmetrical nuclear matter.The CSHINE consists of silicon strip detector(SSD)telescopes and large-area parallel-plate avalanche counters,which measure the light charged particles and fission fragments,respectively.In phase I,two SSD telescopes were used to observe 30 MeV/u 40Ar?197Au reactions.The results presented here demonstrate that hydrogen and helium were observed with high isotopic resolution,and the HBT correlation functions of light charged particles could be constructed from the obtained data.
基金supported by the Science Foundation of Jiangsu Province of China (Grant No.BK2011759)
文摘In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774152)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y1100088)the Founding of Zhejiang Ocean University
文摘Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.
基金Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No 2006A0002M)
文摘This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity correlation function C(τ) and the associated relaxation time T(C) in the case of a stable locked phase resulting from the cross-correlation λq between the real and imaginary parts of quantum noise. Based on numerical computations it finds that the presence of cross correlations between the real and imaginary parts of quantum noise slow down the decay of intensity fluctuation, i.e., it causes the increase of intensity fluctuation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374007).
文摘We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.
基金Supported by the NSFC(10371092,11771185,10871200)
文摘There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section 2, we prove that any BCDSTRE must be a Markov chain in time random environment when we consider the distribution of the particles in space as a random element. In Section 3, we calculate the first-order moments and the second-order moments of BCDSTRE.