Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution ...Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.展开更多
The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) la...The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.展开更多
This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach s...This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.展开更多
基金supported by the National Natural Science Foundation of China (6087213461072117)
文摘Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.
基金This work was partially supported by NSF under Grant 60496315 and national "863" projects under Grant2003AA12331005
文摘The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.
基金supported by the Beijing Natural Science Foundation of China (4102050)the National Natural Science of Foundation of China (NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.