An efficient spaee-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency s...An efficient spaee-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (ODFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximux diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirned by corroborating numerical simulations.展开更多
This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach s...This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.展开更多
Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and g...Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.展开更多
Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from...Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.展开更多
A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmit...A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme展开更多
The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) la...The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.展开更多
The simplified joint channel estimation and symbol detection based on the EM (expectation-maximization) algorithm for space-time block code (STBC) are proposed. By assuming channel to be invariant within only one STBC...The simplified joint channel estimation and symbol detection based on the EM (expectation-maximization) algorithm for space-time block code (STBC) are proposed. By assuming channel to be invariant within only one STBC word and utilizing the orthogonal structure of STBC, the computational complexity and cost of this algorithm are both very low, so it is very suitable to implementation in real systems.展开更多
Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime b...Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing s...An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.展开更多
Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI...Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.展开更多
The space time spreading, superimposed training sequences, and space-time coding are used to present a multiple input and multiple output (MIMO) systems model, and a closed-form of average error probability upper bo...The space time spreading, superimposed training sequences, and space-time coding are used to present a multiple input and multiple output (MIMO) systems model, and a closed-form of average error probability upper bound expression for MIMO correlated frequency-selective channel in the presence of interference (co-channel interference and jamming signals) is derived. Moreover, the correlation at both ends of the wireless link that can be incorporated equivalently into correlation at the transmit end is also derived, which is significant to analyze space-time link algorithm of MIMO systems.展开更多
As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next...As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.展开更多
针对现有信道估计方案导致正交时频空间(Orthogonal Time Frequency Space,OTFS)调制系统峰均功率比(Peak-to-Average Power Ratio,PAPR)高或频谱效率(Spectral Efficiency,SE)低的问题,提出一种多叠加导频的低PAPR、高SE信道估计方法...针对现有信道估计方案导致正交时频空间(Orthogonal Time Frequency Space,OTFS)调制系统峰均功率比(Peak-to-Average Power Ratio,PAPR)高或频谱效率(Spectral Efficiency,SE)低的问题,提出一种多叠加导频的低PAPR、高SE信道估计方法。发送端利用时域正交性和离散傅里叶域相位的随机性,在时延多普勒域中嵌入与数据相叠加的5导频符号的导频图案实现低PAPR,提高SE。接收端以数据符号与噪声之和的能量均值为基准,实现导频信号检测,同时根据每个导频的不同位置信息恢复出存在相位旋转的数据信号。基于能量准则,利用多个独立的接收信号进行联合信道估计,以降低数据符号的干扰,并采用消息传递算法进行数据恢复。仿真结果表明,该方法比单叠加导频信道估计的PAPR低,同时较嵌入式导频信道估计的SE提高约14.4%。展开更多
水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术...水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术已在水声通信中得到广泛应用,但其性能仍受限于信道状态估计的准确性。正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术通过将数据转换到时延-多普勒域内传输,能够有效地应对水声信道中的多径效应和多普勒频移,提高通信系统的性能和可靠性。综述了OTFS在水声通信中的关键处理技术,涵盖信道估计、信道均衡及多址接入技术三个核心方面,并从天线拓展、机器学习融合及同步创新等方面探讨了未来发展趋势,同时详细分析了复杂信道环境下的信号检测、计算复杂度与实时性平衡、参数估计准确性及水下环境对数据可靠性的影响面临的技术挑战。展开更多
基金This project was supported by the National Natural Science Foundation of China (60272079) and the"863"High Tech-nology Research and Development Programof China (2003AA123310)
文摘An efficient spaee-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (ODFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximux diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirned by corroborating numerical simulations.
基金supported by the Beijing Natural Science Foundation of China (4102050)the National Natural Science of Foundation of China (NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.
基金supported by the National Natural Science Foundation of China(61271327)
文摘Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.
基金supported by Shanghai Municipal Government and Nokia
文摘Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.
基金This project was supported by the National Natural Science Foundation of China (60172018) .
文摘A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme
基金This work was partially supported by NSF under Grant 60496315 and national "863" projects under Grant2003AA12331005
文摘The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.
基金This project was supported by the National Natural Science Foundation of China (60272079).
文摘The simplified joint channel estimation and symbol detection based on the EM (expectation-maximization) algorithm for space-time block code (STBC) are proposed. By assuming channel to be invariant within only one STBC word and utilizing the orthogonal structure of STBC, the computational complexity and cost of this algorithm are both very low, so it is very suitable to implementation in real systems.
基金This project was supported by the National Science Foundation of China (60496314)
文摘Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.
基金supported by the State Key Laboratory for Mobile Communication Open Foundation(N200502)the Natural Science Foundation of Jiangsu Province(BK2007192).
文摘An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.
基金supported by the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(N200904)the Nanjing University of Aeronautics and Astronautics (NUAA) Research Funding (NS2010113)the National Natural Science Foundation of China (61172077)
文摘Two optimal power control (PC) schemes under the power constraint for space-time coded multiple input multiple output systems over the flat Rayleigh fading channel with the imperfect channel state information (CSI) are presented. One is based on the minimization of a bit error rate (BER), and the other is based on the maximization of a fuzzy signal-to-noise ratio. In these schemes, different powers are allocated to individual transmit an- tennas rather than equal power in the conventional one. For the first scheme, the optimal PC procedure is developed. It is shown that the Lagrange multiplier for the constrained optimization in the power control does exist and is unique. A practical iterative algorithm based on Newton's method for finding the Lagrange multiplier is proposed. In the second scheme, some existing schemes are included, and a suboptimal PC procedure is developed by means of the asymptotic performance analysis. With this suboptimal scheme, a simple PC calculation formula is provided, and thus the calculation of the PC will be straightforward. Moreover, the suboptimal scheme has the BER performance close to the optimal scheme. Simulation results show that the two PC schemes can provide BER lower than the equal PC and antenna selection scheme under the imperfect CSI.
基金the National Basic Research Program of China "973"(2008CB317109)the National "863" High-Tech Research and Development Program (2002AA123032)+2 种基金the National Natural Science Foundation of China (60572054)the Innovative Research Team Program of University of Electronic and Technology of Chinathe Doctor Foundation of Guilin University of Electronic Technology.
文摘The space time spreading, superimposed training sequences, and space-time coding are used to present a multiple input and multiple output (MIMO) systems model, and a closed-form of average error probability upper bound expression for MIMO correlated frequency-selective channel in the presence of interference (co-channel interference and jamming signals) is derived. Moreover, the correlation at both ends of the wireless link that can be incorporated equivalently into correlation at the transmit end is also derived, which is significant to analyze space-time link algorithm of MIMO systems.
文摘As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.
文摘针对现有信道估计方案导致正交时频空间(Orthogonal Time Frequency Space,OTFS)调制系统峰均功率比(Peak-to-Average Power Ratio,PAPR)高或频谱效率(Spectral Efficiency,SE)低的问题,提出一种多叠加导频的低PAPR、高SE信道估计方法。发送端利用时域正交性和离散傅里叶域相位的随机性,在时延多普勒域中嵌入与数据相叠加的5导频符号的导频图案实现低PAPR,提高SE。接收端以数据符号与噪声之和的能量均值为基准,实现导频信号检测,同时根据每个导频的不同位置信息恢复出存在相位旋转的数据信号。基于能量准则,利用多个独立的接收信号进行联合信道估计,以降低数据符号的干扰,并采用消息传递算法进行数据恢复。仿真结果表明,该方法比单叠加导频信道估计的PAPR低,同时较嵌入式导频信道估计的SE提高约14.4%。
文摘水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术已在水声通信中得到广泛应用,但其性能仍受限于信道状态估计的准确性。正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术通过将数据转换到时延-多普勒域内传输,能够有效地应对水声信道中的多径效应和多普勒频移,提高通信系统的性能和可靠性。综述了OTFS在水声通信中的关键处理技术,涵盖信道估计、信道均衡及多址接入技术三个核心方面,并从天线拓展、机器学习融合及同步创新等方面探讨了未来发展趋势,同时详细分析了复杂信道环境下的信号检测、计算复杂度与实时性平衡、参数估计准确性及水下环境对数据可靠性的影响面临的技术挑战。