This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter mod...This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.展开更多
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi...In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.展开更多
The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-...The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.展开更多
基金supported by the National Natural Science Foundation of China(60901056)
文摘This paper proposes a unified clutter model incorporating the effects of range walk and array rotation for space-time adaptive processing(STAP) in airborne multi-channel early-warning radar.Based on this clutter model,STAP performance is then analyzed from the perspective of covariance matrix tapering(CMT).For STAP performance degradation due to array rotation,a determinate compensation method is proposed based on the CMT method.Numerical examples are provided to verify the analysis and the proposed compensation method.
文摘In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.
文摘The structure and performance of space-time multiuser detection receiver at base stations of WCDMA system is analyzed, in which smart antenna is employed. WCDMA uplink signal model is established in this paper. Space-time multiuser receiver presented in this paper combines 2D-RAKE with parallel interference cancellation (PIC), and the improved parallel interference cancellation methods are given. A novel space-time multiuser detection scheme, 2DRAKE-GPPIC is proposed. This scheme employs smart antenna to suppress unexpected DOA (Direction Of Arrival) signal, uses RAKE receiver to combine different delays of expected signal, and utilizes grouped partial parallel interference cancellation (GPPIC) algorithm to suppress further the interference signal in the main lobe of array antennas. The simulation results reveal that the scheme of space-time multiuser detection presented in this paper has better performance for WCDMA system.